Counter-Inferential Behavior in Natural and Artificial Cognitive Systems
- URL: http://arxiv.org/abs/2505.13551v1
- Date: Mon, 19 May 2025 05:04:07 GMT
- Title: Counter-Inferential Behavior in Natural and Artificial Cognitive Systems
- Authors: Serge Dolgikh,
- Abstract summary: This study explores the emergence of counter-inferential behavior in natural and artificial cognitive systems.<n>Rather than arising from noise or flawed design, these behaviors emerge through structured interactions between internal information models.<n>The findings highlight the importance of preserving minimal adaptive activation under stable conditions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores the emergence of counter-inferential behavior in natural and artificial cognitive systems, that is, patterns in which agents misattribute empirical success or suppress adaptation, leading to epistemic rigidity or maladaptive stability. We analyze archetypal scenarios in which such behavior arises: reinforcement of stability through reward imbalance, meta-cognitive attribution of success to internal superiority, and protective reframing under perceived model fragility. Rather than arising from noise or flawed design, these behaviors emerge through structured interactions between internal information models, empirical feedback, and higher-order evaluation mechanisms. Drawing on evidence from artificial systems, biological cognition, human psychology, and social dynamics, we identify counter-inferential behavior as a general cognitive vulnerability that can manifest even in otherwise well-adapted systems. The findings highlight the importance of preserving minimal adaptive activation under stable conditions and suggest design principles for cognitive architectures that can resist rigidity under informational stress.
Related papers
- Active Inference AI Systems for Scientific Discovery [1.450405446885067]
This perspective contends that progress turns on closing three mutually reinforcing gaps in abstraction, reasoning and empirical grounding.<n>Design principles are proposed for systems that reason in imaginary spaces and learn from the world.
arXiv Detail & Related papers (2025-06-26T14:43:04Z) - Avoiding Death through Fear Intrinsic Conditioning [48.07595141865156]
We introduce an intrinsic reward function inspired by early amygdala development and produce this intrinsic reward through a novel memory-augmented neural network architecture.<n>We show how this intrinsic motivation serves to deter exploration of terminal states and results in avoidance behavior similar to fear conditioning observed in animals.
arXiv Detail & Related papers (2025-06-05T19:24:51Z) - Dynamic Programming Techniques for Enhancing Cognitive Representation in Knowledge Tracing [125.75923987618977]
We propose the Cognitive Representation Dynamic Programming based Knowledge Tracing (CRDP-KT) model.<n>It is a dynamic programming algorithm to optimize cognitive representations based on the difficulty of the questions and the performance intervals between them.<n>It provides more accurate and systematic input features for subsequent model training, thereby minimizing distortion in the simulation of cognitive states.
arXiv Detail & Related papers (2025-06-03T14:44:48Z) - Autonomous Behavior and Whole-Brain Dynamics Emerge in Embodied Zebrafish Agents with Model-based Intrinsic Motivation [6.291854967532677]
Autonomy is a hallmark of animal intelligence, enabling adaptive and intelligent behavior in complex environments without relying on external reward or task structure.<n>We introduce a novel model-based intrinsic drive explicitly designed to capture robust autonomous exploration observed in animals.<n>Our findings establish a computational framework connecting model-based intrinsic motivation to naturalistic behavior, providing a foundation for building artificial agents with animal-like autonomy.
arXiv Detail & Related papers (2025-05-30T18:21:40Z) - Emergence of Goal-Directed Behaviors via Active Inference with Self-Prior [4.863927022806184]
Infants often exhibit goal-directed behaviors, such as reaching for a sensory stimulus, even when no external reward criterion is provided.<n>We propose a novel density model for an agent's own multimodal sensory experiences, called the "self-prior"<n>Our study implements intrinsically motivated behavior shaped by the agent's own sensory experiences, demonstrating the spontaneous emergence of intentional behavior during early development.
arXiv Detail & Related papers (2025-04-15T11:16:27Z) - Unified Causality Analysis Based on the Degrees of Freedom [1.2289361708127877]
This paper presents a unified method capable of identifying fundamental causal relationships between pairs of systems.
By analyzing the degrees of freedom in the system, our approach provides a more comprehensive understanding of both causal influence and hidden confounders.
This unified framework is validated through theoretical models and simulations, demonstrating its robustness and potential for broader application.
arXiv Detail & Related papers (2024-10-25T10:57:35Z) - Bayesian Theory of Consciousness as Exchangeable Emotion-Cognition Inference [5.234742752529437]
This paper proposes a unified framework in which consciousness emerges as a cycle-consistent, affectively anchored inference process.<n>We formalize emotion as a low-dimensional structural prior and cognition as a specificity-instantiating update.<n>This emotion-cognition cycle minimizes joint uncertainty by aligning emotionally weighted priors with context-sensitive cognitive appraisals.
arXiv Detail & Related papers (2024-05-17T17:06:19Z) - RealBehavior: A Framework for Faithfully Characterizing Foundation
Models' Human-like Behavior Mechanisms [45.97077960079147]
We introduce a framework, RealBehavior, which is designed to characterize the humanoid behaviors of models faithfully.
Our findings suggest that a simple application of psychological tools cannot faithfully characterize all human-like behaviors.
arXiv Detail & Related papers (2023-10-17T12:58:17Z) - Modelling human logical reasoning process in dynamic environmental
stress with cognitive agents [13.171768256928509]
We propose a cognitive agent integrating drift-diffusion with deep reinforcement learning to simulate granular stress effects on logical reasoning process.
Leveraging a large dataset of 21,157 logical responses, we investigate performance impacts of dynamic stress.
Quantitatively, the framework improves cognition modelling by capturing both subject-specific and stimuli-specific behavioural differences.
Overall, this work demonstrates a powerful, data-driven methodology to simulate and understand the vagaries of human logical reasoning process in dynamic contexts.
arXiv Detail & Related papers (2023-01-15T23:46:37Z) - Kernel Based Cognitive Architecture for Autonomous Agents [91.3755431537592]
This paper considers an evolutionary approach to creating a cognitive functionality.
We consider a cognitive architecture which ensures the evolution of the agent on the basis of Symbol Emergence Problem solution.
arXiv Detail & Related papers (2022-07-02T12:41:32Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
We show that it is possible to replicate human behavioral data in both individual and social task settings by modifying the precision of prior and sensory signals.
An analysis of the neural activation traces of the trained networks provides evidence that information is coded in fundamentally different ways in the network in the individual and in the social conditions.
arXiv Detail & Related papers (2022-03-03T17:19:12Z) - Inference of Affordances and Active Motor Control in Simulated Agents [0.5161531917413706]
We introduce an output-probabilistic, temporally predictive, modular artificial neural network architecture.
We show that our architecture develops latent states that can be interpreted as affordance maps.
In combination with active inference, we show that flexible, goal-directed behavior can be invoked.
arXiv Detail & Related papers (2022-02-23T14:13:04Z) - Active Inference in Robotics and Artificial Agents: Survey and
Challenges [51.29077770446286]
We review the state-of-the-art theory and implementations of active inference for state-estimation, control, planning and learning.
We showcase relevant experiments that illustrate its potential in terms of adaptation, generalization and robustness.
arXiv Detail & Related papers (2021-12-03T12:10:26Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - Towards Understanding the Adversarial Vulnerability of Skeleton-based
Action Recognition [133.35968094967626]
Skeleton-based action recognition has attracted increasing attention due to its strong adaptability to dynamic circumstances.
With the help of deep learning techniques, it has also witnessed substantial progress and currently achieved around 90% accuracy in benign environment.
Research on the vulnerability of skeleton-based action recognition under different adversarial settings remains scant.
arXiv Detail & Related papers (2020-05-14T17:12:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.