論文の概要: Unsupervised anomaly detection in MeV ultrafast electron diffraction
- arxiv url: http://arxiv.org/abs/2505.13702v1
- Date: Mon, 19 May 2025 20:05:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:52.509752
- Title: Unsupervised anomaly detection in MeV ultrafast electron diffraction
- Title(参考訳): MeV超高速電子回折における教師なし異常検出
- Authors: Mariana A. Fazio, Salvador Sosa Güitron, Marcus Babzien, Mikhail Fedurin, Junjie Li, Mark Palmer, Sandra S. Biedron, Manel Martinez-Ramon,
- Abstract要約: 本研究では,MUEDにおける異常画像検出のための教師なし異常検出手法の構築に焦点をあてる。
検出器のトレーニングに使用されるデータは手動でラベル付けする必要がないので、教師なしのテクニックが私たちの目的にとって最善の選択だと考えています。
このマシンはデータセットの異常を自身で検出することを目的としており、退屈で時間を要する初期画像検査のユーザを解放する。
- 参考スコア(独自算出の注目度): 8.861112440476983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study focus in the construction of an unsupervised anomaly detection methodology to detect faulty images in MUED. We believe that unsupervised techniques are the best choice for our purposes because the data used to train the detector does not need to be manually labeled, and instead, the machine is intended to detect by itself the anomalies in the dataset, which liberates the user of tedious, time-consuming initial image examination. The structure must, additionally, provide the user with some measure of uncertainty in the detection, so the user can take decisions based on this measure.
- Abstract(参考訳): 本研究では,MUEDにおける異常画像検出のための教師なし異常検出手法の構築に焦点をあてる。
検知器のトレーニングに使用されるデータは手動でラベル付けする必要がなく、代わりに、マシンはデータセットの異常を自身で検出することを目的としており、退屈で時間を要する初期画像検査のユーザを解放する。
さらに、この構造は、ユーザに対して検出の不確実性に関する何らかの尺度を提供しなければならないため、ユーザはこの尺度に基づいて決定を下すことができる。
関連論文リスト
- Track Any Anomalous Object: A Granular Video Anomaly Detection Pipeline [63.96226274616927]
Track Any Anomalous Object (TAO)と呼ばれる新しいフレームワークでは、詳細なビデオ異常検出パイプラインが導入されている。
各画素に異常スコアを割り当てる手法とは異なり、我々の手法は問題から異常オブジェクトの画素レベルの追跡に変換する。
実験の結果、TAOは新しいベンチマークを精度と堅牢性で設定した。
論文 参考訳(メタデータ) (2025-06-05T15:49:39Z) - ATAC-Net: Zoomed view works better for Anomaly Detection [1.024113475677323]
ATAC-Netは、既知の最小限の事前異常から異常を検出する訓練を行うフレームワークである。
我々は、その優位性を、同等の設定で現在の最先端技術と比較する。
論文 参考訳(メタデータ) (2024-06-20T15:18:32Z) - Gazing Into Missteps: Leveraging Eye-Gaze for Unsupervised Mistake Detection in Egocentric Videos of Skilled Human Activities [25.049754180292034]
我々は、視線信号の解析を通して、自我中心ビデオにおける教師なし誤り検出の課題に対処する。
眼球運動が被写体操作活動に密接に従うという観察に基づいて,視線信号が誤検出をどの程度支援できるかを評価する。
予測された視線軌道と観測された視線軌道の矛盾は、誤りを特定する指標として機能する。
論文 参考訳(メタデータ) (2024-06-12T16:29:45Z) - UMAD: Unsupervised Mask-Level Anomaly Detection for Autonomous Driving [16.94473342644408]
我々は,非教師なしの異常検出とUMADの提示を再考し,生成的世界モデルと教師なし画像セグメンテーションを活用する。
我々の手法は、最先端の教師なし異常検出よりも優れています。
論文 参考訳(メタデータ) (2024-06-10T15:32:16Z) - A Study on Unsupervised Anomaly Detection and Defect Localization using Generative Model in Ultrasonic Non-Destructive Testing [0.0]
構造物における人工材料の劣化は深刻な社会問題となっている。
レーザー超音波可視化試験(LUVT)は、超音波伝搬の可視化を可能にする。
本稿では,異常検出手法を用いたLUVT自動検査手法を提案する。
論文 参考訳(メタデータ) (2024-05-26T14:14:35Z) - Deployment Prior Injection for Run-time Calibratable Object Detection [58.636806402337776]
検出器に追加のグラフ入力を導入し、事前にグラフが配置コンテキストを表す。
テストフェーズでは、事前に適切なデプロイメントコンテキストをグラフ編集を通じて検出器に注入することができる。
事前の配置が分かっていない場合でも、検出器は独自の予測を用いて、事前に近似した配置を用いて自己校正を行うことができる。
論文 参考訳(メタデータ) (2024-02-27T04:56:04Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
我々は、先行のない異常発生パラダイムを導入し、GRADと呼ばれる革新的な教師なし異常検出フレームワークを開発した。
PatchDiffは、様々な種類の異常パターンを効果的に公開する。
MVTec ADとMVTec LOCOデータセットの両方の実験も、前述の観測をサポートする。
論文 参考訳(メタデータ) (2023-12-26T07:08:06Z) - Model Selection of Anomaly Detectors in the Absence of Labeled Validation Data [18.233908098602114]
本稿では,画像に基づく異常検出をラベル付き検証データなしで選択するフレームワークSWSAを提案する。
ラベル付き検証データを集める代わりに、トレーニングや微調整なしに合成異常を生成する。
我々の合成異常は、モデル選択のための検証フレームワークを構成する検出タスクを作成するために使用される。
論文 参考訳(メタデータ) (2023-10-16T14:42:22Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
本稿では,再建に基づく機能を,新たな自己監督型予測アーキテクチャビルディングブロックに統合することを提案する。
我々のブロックは、受容領域におけるマスク領域に対する再構成誤差を最小限に抑える損失を備える。
画像やビデオの異常検出のための最先端フレームワークに組み込むことで,ブロックの汎用性を実証する。
論文 参考訳(メタデータ) (2021-11-17T13:30:31Z) - Self-Supervised Person Detection in 2D Range Data using a Calibrated
Camera [83.31666463259849]
2次元LiDARに基づく人検出器のトレーニングラベル(擬似ラベル)を自動生成する手法を提案する。
擬似ラベルで訓練または微調整された自己監視検出器が,手動アノテーションを用いて訓練された検出器を上回っていることを示した。
私達の方法は付加的な分類の努力なしで配置の間に人の探知器を改善する有効な方法です。
論文 参考訳(メタデータ) (2020-12-16T12:10:04Z) - Anomaly Detection in Unsupervised Surveillance Setting Using Ensemble of
Multimodal Data with Adversarial Defense [0.3867363075280543]
本稿では,実時間画像とIMUセンサデータの異常度を推定するアンサンブル検出機構を提案する。
提案手法は,IEEE SP Cup-2020データセットで97.8%の精度で良好に動作する。
論文 参考訳(メタデータ) (2020-07-17T20:03:02Z) - Unsupervised Abnormality Detection Using Heterogeneous Autonomous
Systems [0.3867363075280543]
監視シナリオにおける異常検出は、新たな研究分野である。
本稿では,無人監視ドローンの異常度を推定する異種システムを提案する。
提案手法は, IEEE SP Cup-2020データセットで97.3%の精度で良好に動作する。
論文 参考訳(メタデータ) (2020-06-05T23:09:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。