論文の概要: AutoRev: Multi-Modal Graph Retrieval for Automated Peer-Review Generation
- arxiv url: http://arxiv.org/abs/2505.14376v2
- Date: Wed, 08 Oct 2025 11:20:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-09 14:21:17.996022
- Title: AutoRev: Multi-Modal Graph Retrieval for Automated Peer-Review Generation
- Title(参考訳): AutoRev: ピアレビュー自動生成のためのマルチモーダルグラフ検索
- Authors: Maitreya Prafulla Chitale, Ketaki Mangesh Shetye, Harshit Gupta, Manav Chaudhary, Manish Shrivastava, Vasudeva Varma,
- Abstract要約: AutoRevは自動ピアレビューシステムで、レビュアーと著者の両方に実用的な高品質のフィードバックを提供するように設計されている。
ドキュメントをグラフとしてモデル化することで、AutoRevは、最も関連する情報を効果的に取得する。
AutoRevはピアレビューワークフローを合理化し、課題を緩和し、スケーラブルで高品質な学術出版を可能にする強力なツールだと考えています。
- 参考スコア(独自算出の注目度): 5.72767946092813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enhancing the quality and efficiency of academic publishing is critical for both authors and reviewers, as research papers are central to scholarly communication and a major source of high-quality content on the web. To support this goal, we propose AutoRev, an automatic peer-review system designed to provide actionable, high-quality feedback to both reviewers and authors. AutoRev leverages a novel Multi-Modal Retrieval-Augmented Generation (RAG) framework that combines textual and graphical representations of academic papers. By modelling documents as graphs, AutoRev effectively retrieves the most pertinent information, significantly reducing the input context length for LLMs and thereby enhancing their review generation capabilities. Experimental results show that AutoRev outperforms state-of-the-art baselines by up to 58.72% and demonstrates competitive performance in human evaluations against ground truth reviews. We envision AutoRev as a powerful tool to streamline the peer-review workflow, alleviating challenges and enabling scalable, high-quality scholarly publishing. By guiding both authors and reviewers, AutoRev has the potential to accelerate the dissemination of quality research on the web at a larger scale. Code will be released upon acceptance.
- Abstract(参考訳): 学術出版の質と効率を高めることは、学術的なコミュニケーションの中心であり、ウェブ上の高品質なコンテンツの主要な情報源であるため、著者とレビュアーの両方にとって重要である。
この目標を達成するために,自動ピアレビューシステムであるAutoRevを提案する。
AutoRevは、学術論文のテキスト表現とグラフィカル表現を組み合わせた、新しいマルチモーダル検索・拡張生成(RAG)フレームワークを利用している。
文書をグラフとしてモデル化することにより、AutoRevは最も関連する情報を効果的に検索し、LSMの入力コンテキスト長を大幅に削減し、レビュー生成能力を向上する。
実験の結果、AutoRevは最先端のベースラインを最大58.72%上回り、地上の真実レビューに対する人間の評価における競争性能を示している。
AutoRevはピアレビューワークフローを合理化し、課題を緩和し、スケーラブルで高品質な学術出版を可能にする強力なツールだと考えています。
著者とレビュアーの両方を導くことで、AutoRevは、Web上の品質研究をより大規模に広める可能性を秘めている。
コードは受理時にリリースされる。
関連論文リスト
- Identifying Aspects in Peer Reviews [61.374437855024844]
我々は、ピアレビューのコーパスからきめ細かいアスペクトを抽出するデータ駆動型スキーマを開発した。
我々は、アスペクトを付加したピアレビューのデータセットを導入し、コミュニティレベルのレビュー分析にどのように使用できるかを示す。
論文 参考訳(メタデータ) (2025-04-09T14:14:42Z) - Streamlining the review process: AI-generated annotations in research manuscripts [0.5735035463793009]
本研究では,Large Language Models (LLM) をピアレビュープロセスに統合し,効率を向上する可能性について検討する。
我々は、AIと人間のコラボレーションの潜在的な領域として、写本の注釈、特に抜粋ハイライトに焦点を当てている。
本稿では,GPT-4を利用した原稿レビュープラットフォームAnnotateGPTを紹介する。
論文 参考訳(メタデータ) (2024-11-29T23:26:34Z) - RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance [0.8089605035945486]
本稿では,調査論文レビューの課題を分類問題として概念化するシステムであるRelevAI-Reviewerを提案する。
25,164のインスタンスからなる新しいデータセットを導入する。各インスタンスには1つのプロンプトと4つの候補論文があり、それぞれがプロンプトに関連している。
我々は,各論文の関連性を判断し,最も関連性の高い論文を識別できる機械学習(ML)モデルを開発した。
論文 参考訳(メタデータ) (2024-06-13T06:42:32Z) - Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions [62.0123588983514]
大規模言語モデル(LLM)は様々な分野にまたがる幅広い応用を実証してきた。
我々は、ピアレビュープロセスを多ターン長文対話として再構築し、著者、レビュアー、意思決定者に対して異なる役割を担っている。
複数の情報源から収集された92,017件のレビューを含む26,841件の論文を含む包括的データセットを構築した。
論文 参考訳(メタデータ) (2024-06-09T08:24:17Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [55.33653554387953]
パターン分析とマシンインテリジェンス(PAMI)は、情報の収集と断片化を目的とした多くの文献レビューにつながっている。
本稿では、PAMI分野におけるこれらの文献レビューの徹底的な分析について述べる。
1)PAMI文献レビューの構造的・統計的特徴は何か,(2)レビューの増大するコーパスを効率的にナビゲートするために研究者が活用できる戦略は何か,(3)AIが作成したレビューの利点と限界は人間によるレビューと比較するとどのようなものか,という3つの主要な研究課題に対処しようとする。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Hybrid Long Document Summarization using C2F-FAR and ChatGPT: A
Practical Study [1.933681537640272]
ChatGPTは、大規模言語モデル(LLM)分野における最新のブレークスルーである。
本稿では,ビジネス記事や書籍などの長い文書のハイブリッド抽出と要約パイプラインを提案する。
以上の結果から,ChatGPTの使用は長文を要約するための非常に有望なアプローチであるが,まだ成熟していないことが示唆された。
論文 参考訳(メタデータ) (2023-06-01T21:58:33Z) - NLPeer: A Unified Resource for the Computational Study of Peer Review [58.71736531356398]
NLPeer - 5万以上の論文と5つの異なる会場からの1万1千件のレビューレポートからなる、初めて倫理的にソースされたマルチドメインコーパス。
従来のピアレビューデータセットを拡張し、解析および構造化された論文表現、豊富なメタデータ、バージョニング情報を含む。
我々の研究は、NLPなどにおけるピアレビューの体系的、多面的、エビデンスに基づく研究への道のりをたどっている。
論文 参考訳(メタデータ) (2022-11-12T12:29:38Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
我々はこれをピアレビューテキストとレビュアースコアに基づく論文ランキング問題とみなした。
ピアレビューに基づいて最終決定を行うための,新しい多面的総合評価フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-02T19:41:47Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z) - Automatic generation of reviews of scientific papers [1.1999555634662633]
本稿では,ユーザ定義クエリに対応するレビューペーパーの自動生成手法を提案する。
第1部では、共引用グラフなどの文献パラメータによって、この領域における重要な論文を識別する。
第2段階では、BERTベースのアーキテクチャを使用して、これらの重要な論文の抽出要約のために既存のレビューをトレーニングします。
論文 参考訳(メタデータ) (2020-10-08T17:47:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。