論文の概要: Multi-agent Reinforcement Learning vs. Fixed-Time Control for Traffic Signal Optimization: A Simulation Study
- arxiv url: http://arxiv.org/abs/2505.14544v1
- Date: Tue, 20 May 2025 15:59:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.556587
- Title: Multi-agent Reinforcement Learning vs. Fixed-Time Control for Traffic Signal Optimization: A Simulation Study
- Title(参考訳): 交通信号最適化のためのマルチエージェント強化学習と固定時間制御:シミュレーションによる検討
- Authors: Saahil Mahato,
- Abstract要約: 都市交通渋滞、特に交差点での交通渋滞は、旅行時間、燃料消費および排出に大きな影響を及ぼす。
従来の固定時間信号制御システムは、動的トラフィックパターンを効果的に管理する適応性に欠けることが多い。
本研究では,複数交差点間の交通信号調整を最適化するためのマルチエージェント強化学習の適用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Urban traffic congestion, particularly at intersections, significantly impacts travel time, fuel consumption, and emissions. Traditional fixed-time signal control systems often lack the adaptability to manage dynamic traffic patterns effectively. This study explores the application of multi-agent reinforcement learning (MARL) to optimize traffic signal coordination across multiple intersections within a simulated environment. Utilizing Pygame, a simulation was developed to model a network of interconnected intersections with randomly generated vehicle flows to reflect realistic traffic variability. A decentralized MARL controller was implemented, in which each traffic signal operates as an autonomous agent, making decisions based on local observations and information from neighboring agents. Performance was evaluated against a baseline fixed-time controller using metrics such as average vehicle wait time and overall throughput. The MARL approach demonstrated statistically significant improvements, including reduced average waiting times and improved throughput. These findings suggest that MARL-based dynamic control strategies hold substantial promise for improving urban traffic management efficiency. More research is recommended to address scalability and real-world implementation challenges.
- Abstract(参考訳): 都市交通渋滞、特に交差点での交通渋滞は、旅行時間、燃料消費および排出に大きな影響を及ぼす。
従来の固定時間信号制御システムは、動的トラフィックパターンを効果的に管理する適応性に欠けることが多い。
本研究では,マルチエージェント強化学習(MARL)を用いて,シミュレーション環境における複数交差点間の信号の協調を最適化する手法を提案する。
Pygameを利用して、ランダムに生成された車両の流れと交差する交差点のネットワークをモデル化し、現実的な交通変動を反映するシミュレーションを開発した。
分散MARLコントローラが実装され、各信号機が自律エージェントとして動作し、近隣のエージェントからのローカルな観測と情報に基づいて決定を行う。
平均車両待ち時間や全体のスループットといった指標を用いて,ベースラインの固定時間コントローラの性能を評価した。
MARLアプローチは、平均待ち時間を短縮し、スループットを向上するなど、統計的に有意な改善を示した。
これらの結果は,MARLに基づく動的制御戦略が都市交通管理の効率化に大きく貢献していることを示唆している。
スケーラビリティと実世界の実装課題に対処するために、さらなる研究が推奨されている。
関連論文リスト
- Traffic Co-Simulation Framework Empowered by Infrastructure Camera Sensing and Reinforcement Learning [4.336971448707467]
マルチエージェント強化学習(MARL)は、反復シミュレーションを用いて、ネットワーク内の信号機の制御戦略の学習に特に有効である。
本研究では,高忠実度3次元モデリングと大規模交通流シミュレーションを組み合わせたCARLAとSUMOを統合したシミュレーションフレームワークを提案する。
テストベッドでの実験では、リアルタイムカメラを用いた交通状況検出におけるMARLアプローチの有効性が実証された。
論文 参考訳(メタデータ) (2024-12-05T07:01:56Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - SocialLight: Distributed Cooperation Learning towards Network-Wide
Traffic Signal Control [7.387226437589183]
SocialLightは交通信号制御のための新しいマルチエージェント強化学習手法である。
地元におけるエージェントの個人的限界貢献を推定することにより、協力的な交通規制政策を学習する。
我々は,2つの交通シミュレータの標準ベンチマークにおける最先端の交通信号制御手法に対して,トレーニングネットワークをベンチマークした。
論文 参考訳(メタデータ) (2023-04-20T12:41:25Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
非効率な信号制御手法は、交通渋滞やエネルギー浪費などの多くの問題を引き起こす可能性がある。
本稿では,アクター・クリティカル・ポリシー・グラデーション・アルゴリズムを拡張し,マルチエージェント・ディープ・決定性ポリシー・グラデーション(MADDPG)法を提案する。
論文 参考訳(メタデータ) (2021-07-13T14:11:04Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。