論文の概要: Anomaly Detection Based on Critical Paths for Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2505.14967v1
- Date: Tue, 20 May 2025 23:10:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:58.786145
- Title: Anomaly Detection Based on Critical Paths for Deep Neural Networks
- Title(参考訳): 深部ニューラルネットワークの臨界経路に基づく異常検出
- Authors: Fangzhen Zhao, Chenyi Zhang, Naipeng Dong, Ming Li, Jinxiao Shan,
- Abstract要約: 本研究では、ディープニューラルネットワーク(DNN)から臨界経路を抽出する新しいアプローチについて検討する。
まず、遺伝子進化と突然変異による重要な検出経路を同定する。
従来手法と比較すると,本手法は性能に優れるだけでなく,精度の高い広範囲の異常型の検出にも適していると考えられる。
- 参考スコア(独自算出の注目度): 5.944247868164627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are notoriously hard to understand and difficult to defend. Extracting representative paths (including the neuron activation values and the connections between neurons) from DNNs using software engineering approaches has recently shown to be a promising approach in interpreting the decision making process of blackbox DNNs, as the extracted paths are often effective in capturing essential features. With this in mind, this work investigates a novel approach that extracts critical paths from DNNs and subsequently applies the extracted paths for the anomaly detection task, based on the observation that outliers and adversarial inputs do not usually induce the same activation pattern on those paths as normal (in-distribution) inputs. In our approach, we first identify critical detection paths via genetic evolution and mutation. Since different paths in a DNN often capture different features for the same target class, we ensemble detection results from multiple paths by integrating random subspace sampling and a voting mechanism. Compared with state-of-the-art methods, our experimental results suggest that our method not only outperforms them, but it is also suitable for the detection of a broad range of anomaly types with high accuracy.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は理解が難しく、防御が難しいことで知られている。
近年,ソフトウェア工学的手法を用いてDNNから代表経路(ニューロン活性化値やニューロン間の接続を含む)を抽出することは,ブラックボックスDNNの意思決定過程を解釈する上で有望な手法であることが示されている。
そこで本研究では,DNNから臨界経路を抽出し,その抽出経路を異常検出タスクに適用する手法を提案する。
提案手法では,遺伝子進化と突然変異による重要な検出経路を最初に同定する。
DNNの異なるパスは、しばしば同じターゲットクラスの異なる特徴をキャプチャするので、ランダムなサブスペースサンプリングと投票機構を統合することで、複数のパスから検出結果をアンサンブルする。
従来手法と比較すると,本手法は性能に優れるだけでなく,精度の高い広範囲の異常型の検出にも適していると考えられる。
関連論文リスト
- Detection of out-of-distribution samples using binary neuron activation
patterns [0.26249027950824505]
未確認入力を新しいものとして識別する能力は、自動運転車、無人航空機、ロボットなどの安全上重要な応用に不可欠である。
OODサンプルを検出するための既存のアプローチでは、DNNをブラックボックスとして扱い、出力予測の信頼性スコアを評価する。
本稿では,新しいOOD検出法を提案する。本手法は,ReLUアーキテクチャにおけるニューロン活性化パターン(NAP)の理論的解析に動機付けられている。
論文 参考訳(メタデータ) (2022-12-29T11:42:46Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Adversarial Examples Detection with Bayesian Neural Network [57.185482121807716]
本稿では,ランダムな成分が予測器の滑らかさを向上できるという観測によって動機づけられた敵の例を検出するための新しい枠組みを提案する。
本稿では,BATer を略した新しいベイズ対向型サンプル検出器を提案し,対向型サンプル検出の性能を向上させる。
論文 参考訳(メタデータ) (2021-05-18T15:51:24Z) - Neuron Coverage-Guided Domain Generalization [37.77033512313927]
本稿では、ドメイン知識が利用できないドメイン一般化タスクに注目し、さらに悪いことに、1つのドメインからのサンプルのみをトレーニング中に利用することができる。
私たちの動機は、ディープニューラルネットワーク(DNN)テストの最近の進歩に由来し、DNNのニューロンカバレッジの最大化がDNNの潜在的な欠陥の探索に役立つことが示されています。
論文 参考訳(メタデータ) (2021-02-27T14:26:53Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
ネットワークに十分な数のOR様ニューロンが存在すると、分類の脆さと敵の攻撃に対する脆弱性が増加する。
そこで我々は,AND様ニューロンを定義し,ネットワーク内での割合を増大させる対策を提案する。
MNISTデータセットによる実験結果から,本手法はさらなる探索の方向として有望であることが示唆された。
論文 参考訳(メタデータ) (2021-02-15T08:19:05Z) - Probabilistic Trust Intervals for Out of Distribution Detection [8.35564578781252]
本稿では,従来のパラメータを変更することなく,事前学習ネットワークにおけるOOD検出を向上する手法を提案する。
提案手法は,各ネットワーク重みに対する確率的信頼区間を定義し,分布内データを用いて決定する。
我々は,MNIST,Fashion-MNIST,CIFAR-10,CIFAR-100,CIFAR-10-Cについて検討した。
論文 参考訳(メタデータ) (2021-02-02T06:23:04Z) - A Survey on Assessing the Generalization Envelope of Deep Neural
Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くのアプリケーションで最先端のパフォーマンスを達成する。
入力を受けたDNNが、通常、その決定基準が不透明であるため、正しい出力を提供するかどうかを事前に判断することは困難である。
本調査は,機械学習手法,特にDNNの一般化性能について,大規模フレームワーク内の3つの分野を関連づけるものである。
論文 参考訳(メタデータ) (2020-08-21T09:12:52Z) - A General Framework For Detecting Anomalous Inputs to DNN Classifiers [37.79389209020564]
本稿では,内部のディープニューラルネットワーク層表現に基づく教師なし異常検出フレームワークを提案する。
我々は,強力な逆攻撃とOOD入力を用いた画像分類データセットについて,提案手法の評価を行った。
論文 参考訳(メタデータ) (2020-07-29T22:57:57Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - GraN: An Efficient Gradient-Norm Based Detector for Adversarial and
Misclassified Examples [77.99182201815763]
ディープニューラルネットワーク(DNN)は、敵対的な例やその他のデータ摂動に対して脆弱である。
GraNは、どのDNNにも容易に適応できる時間およびパラメータ効率の手法である。
GraNは多くの問題セットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-04-20T10:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。