論文の概要: Physics-Guided Multi-View Graph Neural Network for Schizophrenia Classification via Structural-Functional Coupling
- arxiv url: http://arxiv.org/abs/2505.15135v1
- Date: Wed, 21 May 2025 05:41:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:58.911169
- Title: Physics-Guided Multi-View Graph Neural Network for Schizophrenia Classification via Structural-Functional Coupling
- Title(参考訳): 物理誘導多視点グラフニューラルネットワークによる構造ファンクション結合による統合失調症の分類
- Authors: Badhan Mazumder, Ayush Kanyal, Lei Wu, Vince D. Calhoun, Dong Hye Ye,
- Abstract要約: 統合失調症(SZ)などの神経精神疾患における脳構造接続(SC)と機能接続(FC)の障害に関する臨床的研究
伝統的なアプローチは、統合失調症(SZ)の機能的データ可用性と認知的理解にのみ依存するかもしれない
- 参考スコア(独自算出の注目度): 16.781078467240985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical studies reveal disruptions in brain structural connectivity (SC) and functional connectivity (FC) in neuropsychiatric disorders such as schizophrenia (SZ). Traditional approaches might rely solely on SC due to limited functional data availability, hindering comprehension of cognitive and behavioral impairments in individuals with SZ by neglecting the intricate SC-FC interrelationship. To tackle the challenge, we propose a novel physics-guided deep learning framework that leverages a neural oscillation model to describe the dynamics of a collection of interconnected neural oscillators, which operate via nerve fibers dispersed across the brain's structure. Our proposed framework utilizes SC to simultaneously generate FC by learning SC-FC coupling from a system dynamics perspective. Additionally, it employs a novel multi-view graph neural network (GNN) with a joint loss to perform correlation-based SC-FC fusion and classification of individuals with SZ. Experiments conducted on a clinical dataset exhibited improved performance, demonstrating the robustness of our proposed approach.
- Abstract(参考訳): 臨床研究は、統合失調症(SZ)のような神経精神疾患における脳構造接続(SC)と機能接続(FC)の破壊を明らかにしている。
従来のアプローチは、機能的なデータ可用性が限られており、複雑なSC-FC相互関係を無視して、SZ患者の認知障害や行動障害の理解を妨げるため、SCにのみ依存する可能性がある。
この課題に対処するために,脳構造全体に分散した神経線維を介して動作する相互接続型神経発振器の集合の力学を記述するために,神経発振モデルを利用する新しい物理誘導型ディープラーニングフレームワークを提案する。
提案フレームワークは,システム力学の観点からSC-FC結合を学習し,同時にFCを生成する。
さらに、相関に基づくSC-FC融合とSZによる個人分類を行うために、結合損失を伴う新しいマルチビューグラフニューラルネットワーク(GNN)を採用している。
臨床データセットを用いて行った実験では,提案手法のロバスト性を実証し,良好な成績を示した。
関連論文リスト
- NeuroPath: A Neural Pathway Transformer for Joining the Dots of Human Connectomes [4.362614418491178]
本稿では, FCのユビキタスインスタンスが, SCによって物理的に配線された神経経路(デトゥール)によってどのようにサポートされているかを明らかにするために, トポロジカルデトゥールの概念を導入する。
機械学習のclich'eでは、SC-FCカップリングの基礎となるマルチホップデトゥール経路により、新しいマルチヘッド自己保持機構を考案することができる。
バイオインスパイアされたニューロパス(NeuroPath)と呼ばれる深層モデルを提案し,これまでにない量のニューロイメージから有意な結合性特徴表現を求める。
論文 参考訳(メタデータ) (2024-09-26T03:40:12Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - A Deep Probabilistic Spatiotemporal Framework for Dynamic Graph Representation Learning with Application to Brain Disorder Identification [5.563162319586206]
機能的接続(FC)を用いた脳コネクトーム分類におけるパターン認識手法の最近の応用は、時間とともに脳コネクトームの認知的側面へとシフトしている。
本稿では,ヒトの自閉症スペクトラム障害(ASD)を同定するために,非時間変動ベイズフレームワークを提案する。
このフレームワークは、動的FCネットワークをまたいだリッチテンポラルパターンをキャプチャするための注意に基づくメッセージパッシングスキームを備えた、空間認識リカレントニューラルネットワークを組み込んでいる。
論文 参考訳(メタデータ) (2023-02-14T18:42:17Z) - Modeling Associative Plasticity between Synapses to Enhance Learning of
Spiking Neural Networks [4.736525128377909]
Spiking Neural Networks(SNN)は、ニューラルネットワークの第3世代であり、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする。
本稿では,シナプス間の結合可塑性をモデル化し,頑健で効果的な学習機構を提案する。
本手法は静的および最先端のニューロモルフィックデータセット上での優れた性能を実現する。
論文 参考訳(メタデータ) (2022-07-24T06:12:23Z) - Cross-Frequency Coupling Increases Memory Capacity in Oscillatory Neural
Networks [69.42260428921436]
クロス周波数カップリング(CFC)は、ニューロンの集団間での情報統合と関連している。
我々は,海馬および大脳皮質における観測された$theta - gamma$振動回路の計算的役割を予測するCFCのモデルを構築した。
CFCの存在は, 可塑性シナプスによって結合された神経細胞のメモリ容量を増加させることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:13:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。