Experimental robustness benchmark of quantum neural network on a superconducting quantum processor
- URL: http://arxiv.org/abs/2505.16714v1
- Date: Thu, 22 May 2025 14:18:14 GMT
- Title: Experimental robustness benchmark of quantum neural network on a superconducting quantum processor
- Authors: Hai-Feng Zhang, Zhao-Yun Chen, Peng Wang, Liang-Liang Guo, Tian-Le Wang, Xiao-Yan Yang, Ren-Ze Zhao, Ze-An Zhao, Sheng Zhang, Lei Du, Hao-Ran Tao, Zhi-Long Jia, Wei-Cheng Kong, Huan-Yu Liu, Athanasios V. Vasilakos, Yang Yang, Yu-Chun Wu, Ji Guan, Peng Duan, Guo-Ping Guo,
- Abstract summary: Quantum machine learning (QML) models, like their classical counterparts, are vulnerable to adversarial attacks, hindering their secure deployment.<n>Here, we report the first systematic experimental robustness benchmark for 20-qubit quantum neural network (QNN)<n>Our benchmarking framework features an efficient adversarial attack algorithm designed for QNNs, enabling quantitative characterization of adversarial robustness and robustness bounds.
- Score: 14.38187281782993
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantum machine learning (QML) models, like their classical counterparts, are vulnerable to adversarial attacks, hindering their secure deployment. Here, we report the first systematic experimental robustness benchmark for 20-qubit quantum neural network (QNN) classifiers executed on a superconducting processor. Our benchmarking framework features an efficient adversarial attack algorithm designed for QNNs, enabling quantitative characterization of adversarial robustness and robustness bounds. From our analysis, we verify that adversarial training reduces sensitivity to targeted perturbations by regularizing input gradients, significantly enhancing QNN's robustness. Additionally, our analysis reveals that QNNs exhibit superior adversarial robustness compared to classical neural networks, an advantage attributed to inherent quantum noise. Furthermore, the empirical upper bound extracted from our attack experiments shows a minimal deviation ($3 \times 10^{-3}$) from the theoretical lower bound, providing strong experimental confirmation of the attack's effectiveness and the tightness of fidelity-based robustness bounds. This work establishes a critical experimental framework for assessing and improving quantum adversarial robustness, paving the way for secure and reliable QML applications.
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - A Coverage-Guided Testing Framework for Quantum Neural Networks [1.7101498519540597]
Quantum Neural Networks (QNNs) integrate quantum computing and deep neural networks, leveraging quantum properties like superposition and entanglement to enhance machine learning algorithms.<n>However, verifying QNNs poses significant challenges due to the inherently non-classical nature of quantum mechanics.<n>We propose QCov, a set of test coverage criteria specifically designed to systematically evaluate QNN state exploration during testing.
arXiv Detail & Related papers (2024-11-03T08:07:27Z) - RobQuNNs: A Methodology for Robust Quanvolutional Neural Networks against Adversarial Attacks [3.9554540293311864]
Quanvolutional Neural Networks (QuNNs) integrate quantum and classical layers.
This study introduces RobQuNN, a new methodology to enhance the robustness of QuNNs against adversarial attacks.
The findings reveal that QuNNs exhibit up to 60% higher robustness compared to classical networks for the MNIST dataset.
arXiv Detail & Related papers (2024-07-04T12:13:52Z) - QuanTest: Entanglement-Guided Testing of Quantum Neural Network Systems [45.18451374144537]
Quantum Neural Network (QNN) combines the Deep Learning (DL) principle with the fundamental theory of quantum mechanics to achieve machine learning tasks with quantum acceleration.
QNN systems differ significantly from traditional quantum software and classical DL systems, posing critical challenges for QNN testing.
We propose QuanTest, a quantum entanglement-guided adversarial testing framework to uncover potential erroneous behaviors in QNN systems.
arXiv Detail & Related papers (2024-02-20T12:11:28Z) - Neural Quantum Embedding: Pushing the Limits of Quantum Supervised Learning [0.40964539027092917]
We present Neural Quantum Embedding (NQE), a method that efficiently optimize quantum embedding beyond the limitations of positive and trace-preserving maps.
NQE enhances the lower bound of the empirical risk, leading to substantial improvements in classification performance.
arXiv Detail & Related papers (2023-11-19T19:58:33Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - A Layer-wise Adversarial-aware Quantization Optimization for Improving
Robustness [4.794745827538956]
We find that adversarially-trained neural networks are more vulnerable to quantization loss than plain models.
We propose a layer-wise adversarial-aware quantization method, using the Lipschitz constant to choose the best quantization parameter settings for a neural network.
Experiment results show that our method can effectively and efficiently improve the robustness of quantized adversarially-trained neural networks.
arXiv Detail & Related papers (2021-10-23T22:11:30Z) - The dilemma of quantum neural networks [63.82713636522488]
We show that quantum neural networks (QNNs) fail to provide any benefit over classical learning models.
QNNs suffer from the severely limited effective model capacity, which incurs poor generalization on real-world datasets.
These results force us to rethink the role of current QNNs and to design novel protocols for solving real-world problems with quantum advantages.
arXiv Detail & Related papers (2021-06-09T10:41:47Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - QUANOS- Adversarial Noise Sensitivity Driven Hybrid Quantization of
Neural Networks [3.2242513084255036]
QUANOS is a framework that performs layer-specific hybrid quantization based on Adversarial Noise Sensitivity (ANS)
Our experiments on CIFAR10, CIFAR100 datasets show that QUANOS outperforms homogenously quantized 8-bit precision baseline in terms of adversarial robustness.
arXiv Detail & Related papers (2020-04-22T15:56:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.