Leveraging biased noise for more efficient quantum error correction at the circuit-level with two-level qubits
- URL: http://arxiv.org/abs/2505.17718v1
- Date: Fri, 23 May 2025 10:35:36 GMT
- Title: Leveraging biased noise for more efficient quantum error correction at the circuit-level with two-level qubits
- Authors: Josu Etxezarreta Martinez, Paul Schnabl, Javier Oliva del Moral, Reza Dastbasteh, Pedro M. Crespo, Ruben M. Otxoa,
- Abstract summary: We show that a residual bias up to $etasim$5 can be maintained in CNOT gates under certain conditions.<n>We numerically study the performance of the XZZX surface code and observe that bias-preserving CZ gates are critical for leveraging biased noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tailoring quantum error correction codes (QECC) to biased noise has demonstrated significant benefits. However, most of the prior research on this topic has focused on code capacity noise models. Furthermore, a no-go theorem prevents the construction of CNOT gates for two-level qubits in a bias preserving manner which may, in principle, imply that noise bias cannot be leveraged in such systems. In this work, we show that a residual bias up to $\eta\sim$5 can be maintained in CNOT gates under certain conditions. Moreover, we employ controlled-phase (CZ) gates in syndrome extraction circuits and show how to natively implement these in a bias-preserving manner for a broad class of qubit platforms. This motivates the introduction of what we call a hybrid biased-depolarizing (HBD) circuit-level noise model which captures these features. We numerically study the performance of the XZZX surface code and observe that bias-preserving CZ gates are critical for leveraging biased noise. Accounting for the residual bias present in the CNOT gates, we observe an increase in the code threshold up to a $1.27\%$ physical error rate, representing a $90\%$ improvement. Additionally, we find that the required qubit footprint can be reduced by up to a $75\%$ at relevant physical error rates.
Related papers
- Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - High threshold codes for neutral atom qubits with biased erasure errors [0.0]
We identify a new type of structured noise motivated by neutral atom qubits, biased erasure errors.
We study the performance of this model using gate-level simulations of the XZZX surface code.
We discuss a potential physical implementation using a single plane of atoms and moveable tweezers.
arXiv Detail & Related papers (2023-02-06T19:01:32Z) - Biased Gottesman-Kitaev-Preskill repetition code [0.0]
Continuous-variable quantum computing architectures based upon the Gottesmann-Kitaev-Preskill (GKP) encoding have emerged as a promising candidate.
We study the code-capacity behaviour of a rectangular-lattice GKP encoding with a repetition code under an isotropic Gaussian displacement channel.
arXiv Detail & Related papers (2022-12-21T22:56:05Z) - Witnessing entanglement in trapped-ion quantum error correction under
realistic noise [41.94295877935867]
Quantum Error Correction (QEC) exploits redundancy by encoding logical information into multiple physical qubits.
We present a detailed microscopic error model to estimate the average gate infidelity of two-qubit light-shift gates used in trapped-ion platforms.
We then apply this realistic error model to quantify the multipartite entanglement generated by circuits that act as QEC building blocks.
arXiv Detail & Related papers (2022-12-14T20:00:36Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Clifford-deformed Surface Codes [43.586723306759254]
Various realizations of Kitaev's surface code perform surprisingly well for biased Pauli noise.
We analyze CDSCs on the $3times 3$ square lattice and find that, depending on the noise bias, their logical error rates can differ by orders of magnitude.
arXiv Detail & Related papers (2022-01-19T19:00:00Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Quantum Circuit Engineering for Correcting Coherent Noise [1.0965065178451106]
Crosstalk and several sources of operational interference are invisible when qubit or a gate is calibrated or benchmarked in isolation.
Unwanted Z-Z coupling on superconducting cross-resonance CNOT gates, is a commonly occurring unitary crosstalk noise.
Experiments aggressively deploy forced commutation of CNOT gates to obtain low noise state-preparation circuits.
arXiv Detail & Related papers (2021-09-08T10:33:18Z) - Engineering fast bias-preserving gates on stabilized cat qubits [64.20602234702581]
bias-preserving gates can significantly reduce resource overhead for fault-tolerant quantum computing.
In this work, we apply a derivative-based leakage suppression technique to overcome non-adiabatic errors.
arXiv Detail & Related papers (2021-05-28T15:20:21Z) - Low overhead fault-tolerant quantum error correction with the
surface-GKP code [60.44022726730614]
We propose a highly effective use of the surface-GKP code, i.e., the surface code consisting of bosonic GKP qubits instead of bare two-dimensional qubits.
We show that a low logical failure rate $p_L 10-7$ can be achieved with moderate hardware requirements.
arXiv Detail & Related papers (2021-03-11T23:07:52Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.