High threshold codes for neutral atom qubits with biased erasure errors
- URL: http://arxiv.org/abs/2302.03063v2
- Date: Tue, 17 Oct 2023 18:51:36 GMT
- Title: High threshold codes for neutral atom qubits with biased erasure errors
- Authors: Kaavya Sahay, Junlan Jin, Jahan Claes, Jeff D. Thompson, Shruti Puri
- Abstract summary: We identify a new type of structured noise motivated by neutral atom qubits, biased erasure errors.
We study the performance of this model using gate-level simulations of the XZZX surface code.
We discuss a potential physical implementation using a single plane of atoms and moveable tweezers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The requirements for fault-tolerant quantum error correction can be
simplified by leveraging structure in the noise of the underlying hardware. In
this work, we identify a new type of structured noise motivated by neutral atom
qubits, biased erasure errors, which arises when qubit errors are dominated by
detectable leakage from only one of the computational states of the qubit. We
study the performance of this model using gate-level simulations of the XZZX
surface code. Using the predicted erasure fraction and bias of metastable
$^{171}$Yb qubits, we find a threshold of 8.2% for two-qubit gate errors, which
is 1.9 times higher than the threshold for unbiased erasures, and 7.5 times
higher than the threshold for depolarizing errors. Surprisingly, the improved
threshold is achieved without bias-preserving controlled-not gates, and instead
results from the lower noise entropy in this model. We also introduce an XZZX
cluster state construction for measurement-based error correction,
hybrid-fusion, that is optimized for this noise model. By combining fusion
operations and deterministic entangling gates, this construction preserves the
intrinsic symmetry of the XZZX code, leading to a higher threshold of 10.3% and
enabling the use of rectangular codes with fewer qubits. We discuss a potential
physical implementation using a single plane of atoms and moveable tweezers.
Related papers
- Fault-tolerant quantum computation using large spin cat-codes [0.8640652806228457]
We construct a fault-tolerant quantum error-correcting protocol based on a qubit encoded in a large spin qudit using a spin-cat code.
We show how to generate a universal gate set, including the rank-preserving CNOT gate, using quantum control and the Rydberg blockade.
These findings pave the way for encoding a qubit in a large spin with the potential to achieve fault tolerance, high threshold, and reduced resource overhead in quantum information processing.
arXiv Detail & Related papers (2024-01-08T22:56:05Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
We show that a "dual-rail qubit" consisting of a pair of resonantly coupled transmons can form a highly coherent erasure qubit.
We demonstrate mid-circuit detection of erasure errors while introducing $ 0.1%$ dephasing error per check.
This work establishes transmon-based dual-rail qubits as an attractive building block for hardware-efficient quantum error correction.
arXiv Detail & Related papers (2023-07-17T18:00:01Z) - Error mitigation, optimization, and extrapolation on a trapped ion testbed [0.05185707610786576]
A form of error mitigation called zero noise extrapolation (ZNE) can decrease an algorithm's sensitivity to these errors without increasing the number of required qubits.
We explore different methods for integrating this error mitigation technique into the Variational Quantum Eigensolver (VQE) algorithm.
Our results show that the efficacy of this error mitigation technique depends on choosing the correct implementation for a given device architecture.
arXiv Detail & Related papers (2023-07-13T19:02:39Z) - Quantum computation on a 19-qubit wide 2d nearest neighbour qubit array [59.24209911146749]
This paper explores the relationship between the width of a qubit lattice constrained in one dimension and physical thresholds.
We engineer an error bias at the lowest level of encoding using the surface code.
We then address this bias at a higher level of encoding using a lattice-surgery surface code bus.
arXiv Detail & Related papers (2022-12-03T06:16:07Z) - Benchmarking quantum logic operations relative to thresholds for fault
tolerance [0.02171671840172762]
We use gate set tomography to perform precision characterization of a set of two-qubit logic gates to study RC on a superconducting quantum processor.
We show that the average and worst-case error rates are equal for randomly compiled gates, and measure a maximum worst-case error of 0.0197(3) for our gate set.
arXiv Detail & Related papers (2022-07-18T17:41:58Z) - Tailored cluster states with high threshold under biased noise [0.0]
Fault-tolerant cluster states form the basis for scalable measurement-based quantum computation.
We introduce a generalization of the cluster state that allows us to foliate stabilizer codes in a bias-preserving way.
We demonstrate that our XZZX cluster state has a threshold more than double the usual cluster state when dephasing errors are more likely than errors which cause bit flips by a factor of $O(100)$ or more.
arXiv Detail & Related papers (2022-01-25T19:00:00Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.