Evaluating the Usefulness of Non-Diagnostic Speech Data for Developing Parkinson's Disease Classifiers
- URL: http://arxiv.org/abs/2505.18722v1
- Date: Sat, 24 May 2025 14:45:55 GMT
- Title: Evaluating the Usefulness of Non-Diagnostic Speech Data for Developing Parkinson's Disease Classifiers
- Authors: Terry Yi Zhong, Esther Janse, Cristian Tejedor-Garcia, Louis ten Bosch, Martha Larson,
- Abstract summary: Speech-based Parkinson's disease (PD) detection has gained attention for its automated, cost-effective, and non-intrusive nature.<n>This work explores the feasibility of diagnosing PD on the basis of speech data not originally intended for diagnostic purposes, using the Turn-Taking dataset.
- Score: 5.7624965034085545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech-based Parkinson's disease (PD) detection has gained attention for its automated, cost-effective, and non-intrusive nature. As research studies usually rely on data from diagnostic-oriented speech tasks, this work explores the feasibility of diagnosing PD on the basis of speech data not originally intended for diagnostic purposes, using the Turn-Taking (TT) dataset. Our findings indicate that TT can be as useful as diagnostic-oriented PD datasets like PC-GITA. We also investigate which specific dataset characteristics impact PD classification performance. The results show that concatenating audio recordings and balancing participants' gender and status distributions can be beneficial. Cross-dataset evaluation reveals that models trained on PC-GITA generalize poorly to TT, whereas models trained on TT perform better on PC-GITA. Furthermore, we provide insights into the high variability across folds, which is mainly due to large differences in individual speaker performance.
Related papers
- Evaluating the Effectiveness of Pre-Trained Audio Embeddings for Classification of Parkinson's Disease Speech Data [0.7673339435080445]
Speech impairments are prevalent biomarkers for Parkinson's Disease (PD)<n>Deep acoustic features have shown promise for PD classification, but their effectiveness often varies due to speaker differences.<n>This study investigates the effectiveness of three pre-trained audio embeddings for PD classification.
arXiv Detail & Related papers (2025-06-02T09:32:54Z) - Investigating the Effectiveness of Explainability Methods in Parkinson's Detection from Speech [13.700867213652648]
Speech impairments in Parkinson's disease (PD) provide significant early indicators for diagnosis.
Models for speech-based PD detection have shown strong performance, but their interpretability remains underexplored.
This study systematically evaluates several explainability methods to identify PD-specific speech features.
arXiv Detail & Related papers (2024-11-12T18:43:27Z) - Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech.
This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches.
Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection.
Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls.
arXiv Detail & Related papers (2024-07-22T23:24:02Z) - Voice Disorder Analysis: a Transformer-based Approach [10.003909936239742]
This paper proposes a novel solution that adopts transformers directly working on raw voice signals.
We consider many recording types at the same time, such as sentence reading and sustained vowel emission.
The experimental results, obtained on both public and private datasets, show the effectiveness of our solution in the disorder detection and classification tasks.
arXiv Detail & Related papers (2024-06-20T19:29:04Z) - A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals [8.526741765074677]
This study presents a deep learning-based model for the diagnosis of Parkinson's disease (PD) using resting state electroencephalogram (EEG) signal.
The model is designed using a hybrid model, consists of convolutional neural network (CNN), bidirectional gated recurrent unit (Bi-GRU) and attention mechanism.
The results show that the proposed model can accurately diagnose PD with high performance on both the training and hold-out datasets.
arXiv Detail & Related papers (2023-08-14T20:06:19Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Exploring linguistic feature and model combination for speech
recognition based automatic AD detection [61.91708957996086]
Speech based automatic AD screening systems provide a non-intrusive and more scalable alternative to other clinical screening techniques.
Scarcity of specialist data leads to uncertainty in both model selection and feature learning when developing such systems.
This paper investigates the use of feature and model combination approaches to improve the robustness of domain fine-tuning of BERT and Roberta pre-trained text encoders.
arXiv Detail & Related papers (2022-06-28T05:09:01Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
arXiv Detail & Related papers (2022-05-12T08:59:57Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - DTR Bandit: Learning to Make Response-Adaptive Decisions With Low Regret [59.81290762273153]
Dynamic treatment regimes (DTRs) are personalized, adaptive, multi-stage treatment plans that adapt treatment decisions to an individual's initial features and to intermediate outcomes and features at each subsequent stage.
We propose a novel algorithm that, by carefully balancing exploration and exploitation, is guaranteed to achieve rate-optimal regret when the transition and reward models are linear.
arXiv Detail & Related papers (2020-05-06T13:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.