Investigating the Effectiveness of Explainability Methods in Parkinson's Detection from Speech
- URL: http://arxiv.org/abs/2411.08013v2
- Date: Wed, 13 Nov 2024 13:36:05 GMT
- Title: Investigating the Effectiveness of Explainability Methods in Parkinson's Detection from Speech
- Authors: Eleonora Mancini, Francesco Paissan, Paolo Torroni, Mirco Ravanelli, Cem Subakan,
- Abstract summary: Speech impairments in Parkinson's disease (PD) provide significant early indicators for diagnosis.
Models for speech-based PD detection have shown strong performance, but their interpretability remains underexplored.
This study systematically evaluates several explainability methods to identify PD-specific speech features.
- Score: 13.700867213652648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech impairments in Parkinson's disease (PD) provide significant early indicators for diagnosis. While models for speech-based PD detection have shown strong performance, their interpretability remains underexplored. This study systematically evaluates several explainability methods to identify PD-specific speech features, aiming to support the development of accurate, interpretable models for clinical decision-making in PD diagnosis and monitoring. Our methodology involves (i) obtaining attributions and saliency maps using mainstream interpretability techniques, (ii) quantitatively evaluating the faithfulness of these maps and their combinations obtained via union and intersection through a range of established metrics, and (iii) assessing the information conveyed by the saliency maps for PD detection from an auxiliary classifier. Our results reveal that, while explanations are aligned with the classifier, they often fail to provide valuable information for domain experts.
Related papers
- A Methodological and Structural Review of Parkinsons Disease Detection Across Diverse Data Modalities [0.6827423171182153]
10 million people globally diagnosed globally 1 to 1.8 per 1,000 individuals, according to reports by the Japan Times and the Parkinson Foundation.
This study presents a comprehensive review of PD recognition systems across diverse data modalities.
Based on over 347 articles from leading scientific databases, this review examines key aspects such as data collection methods, settings, feature representations, and system performance.
arXiv Detail & Related papers (2025-05-01T13:47:45Z) - Uncertainty-aware abstention in medical diagnosis based on medical texts [87.88110503208016]
This study addresses the critical issue of reliability for AI-assisted medical diagnosis.
We focus on the selection prediction approach that allows the diagnosis system to abstain from providing the decision if it is not confident in the diagnosis.
We introduce HUQ-2, a new state-of-the-art method for enhancing reliability in selective prediction tasks.
arXiv Detail & Related papers (2025-02-25T10:15:21Z) - Artificial intelligence-enabled detection and assessment of Parkinson's disease using multimodal data: A survey [2.06242362470764]
Currently, there are no effective biomarkers for diagnosing Parkinson's disease, assessing its severity, or tracking its progression.
Numerous AI algorithms are now being used for PD diagnosis and treatment, capable of performing various classification tasks based on multimodal and heterogeneous disease symptom data.
They provide expressive feedback, including predicting the potential likelihood of PD, assessing the severity of individual or multiple symptoms, aiding in early detection, and evaluating rehabilitation and treatment effectiveness.
arXiv Detail & Related papers (2025-02-15T07:26:52Z) - Unveiling Interpretability in Self-Supervised Speech Representations for Parkinson's Diagnosis [9.91077163490596]
We propose a novel, interpretable framework specifically designed to support Parkinson's Disease diagnosis.
Through the design of simple yet effective cross-attention mechanisms, the proposed framework offers interpretability from two distinct but complementary perspectives.
Our method results competitive with state-of-the-art approaches, while also demonstrating robustness in cross-lingual scenarios.
arXiv Detail & Related papers (2024-12-02T22:23:43Z) - A Review of Deep Learning Approaches for Non-Invasive Cognitive Impairment Detection [35.31259047578382]
This review paper explores recent advances in deep learning approaches for non-invasive cognitive impairment detection.
We examine various non-invasive indicators of cognitive decline, including speech and language, facial, and motoric mobility.
Despite significant progress, several challenges remain, including data standardization and accessibility, model explainability, longitudinal analysis limitations, and clinical adaptation.
arXiv Detail & Related papers (2024-10-25T17:44:59Z) - Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech.
This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches.
Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection.
Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls.
arXiv Detail & Related papers (2024-07-22T23:24:02Z) - EndoOOD: Uncertainty-aware Out-of-distribution Detection in Capsule
Endoscopy Diagnosis [11.82953216903558]
Wireless capsule endoscopy (WCE) is a non-invasive diagnostic procedure that enables visualization of the gastrointestinal (GI) tract.
Deep learning-based methods have shown effectiveness in disease screening using WCE data.
Existing capsule endoscopy classification methods mostly rely on pre-defined categories.
arXiv Detail & Related papers (2024-02-18T06:54:51Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Extracting Diagnosis Pathways from Electronic Health Records Using Deep
Reinforcement Learning [2.0191844627740254]
We aim to learn the optimal sequence of actions to perform in order to obtain a correct diagnosis from electronic health records.
We apply various deep reinforcement learning algorithms to this task and experiment on a synthetic but realistic dataset to differentially diagnose anemia.
arXiv Detail & Related papers (2023-05-10T16:36:54Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
We consider a comorbidity risk prediction scenario and focus on contexts regarding the patients clinical state.
We employ several state-of-the-art LLMs to present contexts around risk prediction model inferences and evaluate their acceptability.
Our paper is one of the first end-to-end analyses identifying the feasibility and benefits of contextual explanations in a real-world clinical use case.
arXiv Detail & Related papers (2023-02-11T18:07:11Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
arXiv Detail & Related papers (2022-05-12T08:59:57Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - Learn-Explain-Reinforce: Counterfactual Reasoning and Its Guidance to
Reinforce an Alzheimer's Disease Diagnosis Model [1.6287500717172143]
We propose a novel framework that unifies diagnostic model learning, visual explanation generation, and trained diagnostic model reinforcement.
For the visual explanation, we generate a counterfactual map that transforms an input sample to be identified as a target label.
arXiv Detail & Related papers (2021-08-21T07:29:13Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.