論文の概要: Data-driven multi-agent modelling of calcium interactions in cell culture: PINN vs Regularized Least-squares
- arxiv url: http://arxiv.org/abs/2505.20327v1
- Date: Fri, 23 May 2025 19:41:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.175332
- Title: Data-driven multi-agent modelling of calcium interactions in cell culture: PINN vs Regularized Least-squares
- Title(参考訳): 細胞培養におけるカルシウム相互作用のデータ駆動型マルチエージェントモデリング:PINN対正規化Last-squares
- Authors: Aurora Poggi, Giuseppe Alessio D'Inverno, Hjalmar Brismar, Ozan Öktem, Matthieu Barreau, Kateryna Morozovska,
- Abstract要約: 本研究では, 細胞群におけるカルシウム輸送特性の評価と性能解析を行う手法を提案する。
本研究では,制約付き正規化最小二乗法 (CRLSM) と物理インフォームドニューラルネットワーク (PINN) の性能を比較し,システム同定とパラメータ探索を行った。
- 参考スコア(独自算出の注目度): 1.6712896227173806
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data-driven discovery of dynamics in biological systems allows for better observation and characterization of processes, such as calcium signaling in cell culture. Recent advancements in techniques allow the exploration of previously unattainable insights of dynamical systems, such as the Sparse Identification of Non-Linear Dynamics (SINDy), overcoming the limitations of more classic methodologies. The latter requires some prior knowledge of an effective library of candidate terms, which is not realistic for a real case study. Using inspiration from fields like traffic density estimation and control theory, we propose a methodology for characterization and performance analysis of calcium delivery in a family of cells. In this work, we compare the performance of the Constrained Regularized Least-Squares Method (CRLSM) and Physics-Informed Neural Networks (PINN) for system identification and parameter discovery for governing ordinary differential equations (ODEs). The CRLSM achieves a fairly good parameter estimate and a good data fit when using the learned parameters in the Consensus problem. On the other hand, despite the initial hypothesis, PINNs fail to match the CRLSM performance and, under the current configuration, do not provide fair parameter estimation. However, we have only studied a limited number of PINN architectures, and it is expected that additional hyperparameter tuning, as well as uncertainty quantification, could significantly improve the performance in future works.
- Abstract(参考訳): データ駆動による生物学的システムのダイナミクスの発見は、細胞培養におけるカルシウムシグナリングなどのプロセスの観察とキャラクタリゼーションを向上する。
近年の技術進歩により、非線形力学(SINDy)のスパース同定(Sparse Identification of Non-Linear Dynamics, SINDy)のような、より古典的な方法論の限界を克服するといった、それまで達成不可能な力学系の洞察を探索することができる。
後者は、候補項の効果的なライブラリに関する事前知識を必要とするが、実際のケーススタディでは現実的ではない。
交通密度推定や制御理論などの分野からのインスピレーションを用いて, 細胞群におけるカルシウム輸送の特性評価と性能解析を行う手法を提案する。
本研究では,正規化最小二乗法 (CRLSM) と物理インフォームドニューラルネットワーク (PINN) の性能を比較し,通常の微分方程式 (ODE) のシステム同定とパラメータ探索を行う。
CRLSMは、Consensus問題における学習パラメータを使用する際に、かなりよいパラメータ推定と良いデータ適合を達成する。
一方、初期仮説にもかかわらず、PINNはCRLSMの性能と一致せず、現在の構成では、公平なパラメータ推定を提供していない。
しかし, PINNアーキテクチャは限られた数しか研究されておらず, 追加のハイパーパラメータチューニングや不確かさの定量化により, 今後の作業における性能が大幅に向上することが期待できる。
関連論文リスト
- Physics Informed Constrained Learning of Dynamics from Static Data [8.346864633675414]
物理インフォームドニューラルネットワーク(PINN)は、制御物理法則をニューラルネットワークのアーキテクチャに統合することにより、システムのダイナミクスをモデル化する。
既存のPINNフレームワークは、完全に観測された時間軸データに依存しており、多くのシステムでは取得が禁止される可能性がある。
本研究では,非時間コースや部分的に観測されたデータを用いて一階微分や動きを近似できる新しいPINN学習パラダイムであるConstrained Learningを開発した。
論文 参考訳(メタデータ) (2025-04-17T06:06:53Z) - Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems [49.819436680336786]
本研究では,高次元非定常力学系のスケーラブルかつ柔軟なモデリングのための効率的な変換ガウス過程状態空間モデル(ETGPSSM)を提案する。
具体的には、ETGPSSMは、単一の共有GPと入力依存の正規化フローを統合し、複雑な非定常遷移ダイナミクスを捉える前に、表現的な暗黙のプロセスを生成する。
ETGPSSMは、計算効率と精度の観点から、既存のGPSSMとニューラルネットワークベースのSSMより優れています。
論文 参考訳(メタデータ) (2025-03-24T03:19:45Z) - Active Learning with Fully Bayesian Neural Networks for Discontinuous and Nonstationary Data [0.0]
我々は,「小さなデータ」体制下でのアクティブな学習タスクに対して,完全ベイズニューラルネットワーク(FBNN)を導入する。
FBNNは信頼性の高い予測分布を提供し、アクティブな学習環境における不確実性の下で情報的意思決定に不可欠である。
そこで我々は,FBNNの「小型データ」システムにおけるアクティブな学習課題に対するNo-U-Turn Samplerを用いて,FBNNの適合性と性能を評価する。
論文 参考訳(メタデータ) (2024-05-16T05:20:47Z) - Band-gap regression with architecture-optimized message-passing neural
networks [1.9590152885845324]
AFLOWデータベースからの密度汎関数理論データから材料を金属または半導体/絶縁体として分類するMPNNを訓練する。
次に,MPNNのモデル構造とハイパーパラメータ空間を探索し,非金属と同定された材料のバンドギャップを予測する。
検索から得られる最高のパフォーマンスモデルはアンサンブルにまとめられ、既存のモデルよりもはるかに優れています。
論文 参考訳(メタデータ) (2023-09-12T16:13:10Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
我々は、長期記憶をモデル化できる低次元状態空間を学習するための理論的証拠を提供する。
実験は、線形RNNと非線形RNNの両方で低次元状態空間を学習することで、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2022-10-25T14:45:15Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。