Leveraging Diffusion Models for Parameterized Quantum Circuit Generation
- URL: http://arxiv.org/abs/2505.20863v3
- Date: Wed, 23 Jul 2025 13:04:46 GMT
- Title: Leveraging Diffusion Models for Parameterized Quantum Circuit Generation
- Authors: Daniel Barta, Darya Martyniuk, Johannes Jung, Adrian Paschke,
- Abstract summary: We introduce a generative approach based on denoising diffusion models (DMs) to synthesize quantum circuits (PQCs)<n>We demonstrate our approach in synthesizing PQCs optimized for generating high-fidelity Greenberger-Horne-Zeilinger (GHZ) states and achieving high accuracy in quantum machine learning (QML) classification tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing holds immense potential, yet its practical success depends on multiple factors, including advances in quantum circuit design. In this paper, we introduce a generative approach based on denoising diffusion models (DMs) to synthesize parameterized quantum circuits (PQCs). Extending the recent diffusion model pipeline of F\"urrutter et al. [1], our model effectively conditions the synthesis process, enabling the simultaneous generation of circuit architectures and their continuous gate parameters. We demonstrate our approach in synthesizing PQCs optimized for generating high-fidelity Greenberger-Horne-Zeilinger (GHZ) states and achieving high accuracy in quantum machine learning (QML) classification tasks. Our results indicate a strong generalization across varying gate sets and scaling qubit counts, highlighting the versatility and computational efficiency of diffusion-based methods. This work illustrates the potential of generative models as a powerful tool for accelerating and optimizing the design of PQCs, supporting the development of more practical and scalable quantum applications.
Related papers
- TensoMeta-VQC: A Tensor-Train-Guided Meta-Learning Framework for Robust and Scalable Variational Quantum Computing [60.996803677584424]
TensoMeta-VQC is a novel tensor-train (TT)-guided meta-learning framework designed to improve the robustness and scalability of VQC significantly.<n>Our framework fully delegates the generation of quantum circuit parameters to a classical TT network, effectively decoupling optimization from quantum hardware.
arXiv Detail & Related papers (2025-08-01T23:37:55Z) - Demonstration of Efficient Predictive Surrogates for Large-scale Quantum Processors [64.50565018996328]
We introduce the concept of predictive surrogates, designed to emulate the mean-value behavior of a given quantum processor with provably computational efficiency.<n>We use these surrogates to emulate a quantum processor with up to 20 programmable superconducting qubits, enabling efficient pre-training of variational quantum eigensolvers.<n> Experimental results reveal that the predictive surrogates not only reduce measurement overhead by orders of magnitude, but can also surpass the performance of conventional, quantum-resource-intensive approaches.
arXiv Detail & Related papers (2025-07-23T12:51:03Z) - Unitary Scrambling and Collapse: A Quantum Diffusion Framework for Generative Modeling [5.258882634977828]
We propose QSC-Diffusion, the first fully quantum diffusion-based framework for image generation.<n>We employ parameterized quantum circuits with measurement-induced collapse for reverse denoising.<n>Remarkably, QSC-Diffusion achieves competitive FID scores across multiple datasets.
arXiv Detail & Related papers (2025-06-12T11:00:21Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - Flowing Through Hilbert Space: Quantum-Enhanced Generative Models for Lattice Field Theory [0.9208007322096533]
We develop a hybrid quantum-classical normalizing flow model to explore quantum-enhanced sampling in such regimes.<n>Our approach embeds parameterized quantum circuits within a classical normalizing flow architecture, leveraging amplitude encoding and quantum entanglement to enhance expressivity in the generative process.
arXiv Detail & Related papers (2025-05-15T17:58:16Z) - Quantum Walks-Based Adaptive Distribution Generation with Efficient CUDA-Q Acceleration [0.5679775668038153]
We present a novel Adaptive Distribution Generator that leverages a quantum walks-based approach to generate high precision and efficiency of target probability distributions.<n>Our method integrates variational quantum circuits with discrete-time quantum walks, specifically, split-step quantum walks and their entangled extensions, to dynamically tune coin parameters and drive the evolution of quantum states towards desired distributions.
arXiv Detail & Related papers (2025-04-18T07:53:03Z) - Enhancing Quantum Diffusion Models with Pairwise Bell State Entanglement [35.436358464279785]
This paper introduces a novel quantum diffusion model designed for Noisy Intermediate-Scale Quantum (NISQ) devices.
By leveraging quantum entanglement and superposition, this approach advances quantum generative learning.
arXiv Detail & Related papers (2024-11-24T20:14:57Z) - Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Differentiable Quantum Architecture Search in Asynchronous Quantum Reinforcement Learning [3.6881738506505988]
We propose differentiable quantum architecture search (DiffQAS) to enable trainable circuit parameters and structure weights.
We show that our proposed DiffQAS-QRL approach achieves performance comparable to manually-crafted circuit architectures.
arXiv Detail & Related papers (2024-07-25T17:11:00Z) - Quantum Generative Diffusion Model: A Fully Quantum-Mechanical Model for Generating Quantum State Ensemble [40.06696963935616]
We introduce Quantum Generative Diffusion Model (QGDM) as their simple and elegant quantum counterpart.
QGDM exhibits faster convergence than Quantum Generative Adversarial Network (QGAN)
It can achieve 53.02% higher fidelity in mixed-state generation than QGAN.
arXiv Detail & Related papers (2024-01-13T10:56:34Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.