論文の概要: Efficient Identity and Position Graph Embedding via Spectral-Based Random Feature Aggregation
- arxiv url: http://arxiv.org/abs/2505.20992v1
- Date: Tue, 27 May 2025 10:26:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.578679
- Title: Efficient Identity and Position Graph Embedding via Spectral-Based Random Feature Aggregation
- Title(参考訳): スペクトルに基づくランダム特徴集合による効率的なアイデンティティと位置グラフ埋め込み
- Authors: Meng Qin, Jiahong Liu, Irwin King,
- Abstract要約: グラフニューラルネットワーク(GNN)は、機能集約機構を通じてグラフ構造をキャプチャする。
ほとんどのGNNベースのメソッドでは、キャプチャ可能なプロパティが不明確である。
本稿では,効率的なアイデンティティと位置埋め込みのためのランダム特徴集約(RFA)を提案する。
- 参考スコア(独自算出の注目度): 37.25217644507099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs), which capture graph structures via a feature aggregation mechanism following the graph embedding framework, have demonstrated a powerful ability to support various tasks. According to the topology properties (e.g., structural roles or community memberships of nodes) to be preserved, graph embedding can be categorized into identity and position embedding. However, it is unclear for most GNN-based methods which property they can capture. Some of them may also suffer from low efficiency and scalability caused by several time- and space-consuming procedures (e.g., feature extraction and training). From a perspective of graph signal processing, we find that high- and low-frequency information in the graph spectral domain may characterize node identities and positions, respectively. Based on this investigation, we propose random feature aggregation (RFA) for efficient identity and position embedding, serving as an extreme ablation study regarding GNN feature aggregation. RFA (i) adopts a spectral-based GNN without learnable parameters as its backbone, (ii) only uses random noises as inputs, and (iii) derives embeddings via just one feed-forward propagation (FFP). Inspired by degree-corrected spectral clustering, we further introduce a degree correction mechanism to the GNN backbone. Surprisingly, our experiments demonstrate that two variants of RFA with high- and low-pass filters can respectively derive informative identity and position embeddings via just one FFP (i.e., without any training). As a result, RFA can achieve a better trade-off between quality and efficiency for both identity and position embedding over various baselines.
- Abstract(参考訳): グラフ埋め込みフレームワークに続く機能集約機構を通じてグラフ構造をキャプチャするグラフニューラルネットワーク(GNN)は、さまざまなタスクをサポートする強力な能力を示している。
保存されるトポロジー特性(例えば、ノードの構造的役割やコミュニティメンバーシップ)により、グラフ埋め込みはアイデンティティと位置埋め込みに分類できる。
しかし、ほとんどのGNNベースの手法では、キャプチャー可能なプロパティは不明確である。
それらのいくつかは、いくつかの時間的および空間的な手順(例えば、特徴抽出とトレーニング)によって引き起こされる、効率とスケーラビリティの低下にも悩まされる。
グラフ信号処理の観点から、グラフスペクトル領域の高周波数情報と低周波情報はそれぞれノードのアイデンティティと位置を特徴付けることができる。
本研究は,GNN特徴集合に関する極端なアブレーション研究として,効率的なアイデンティティと位置埋め込みのためのランダム特徴集合(RFA)を提案する。
RFA
i) 学習可能なパラメータをバックボーンとして含まないスペクトルベースGNNを採用する。
(二)ランダムノイズのみを入力とし、
(iii)1つのフィードフォワード伝搬(FFP)を介して埋め込みを導出する。
次数補正スペクトルクラスタリングに着想を得て, GNNバックボーンに次数補正機構を導入する。
驚いたことに、我々の実験は、高域フィルタと低域フィルタの2種類のRFAが、それぞれ1つのFFP(すなわち、トレーニングなしで)を介して情報的アイデンティティと位置埋め込みを導出できることを実証した。
結果として、RFAは、様々なベースラインに埋め込まれたアイデンティティと位置の両方に対する品質と効率のトレードオフをより良く達成できる。
関連論文リスト
- Large-Scale Spectral Graph Neural Networks via Laplacian Sparsification: Technical Report [21.288230563135055]
スペクトルグラフニューラルネットワーク(GNN)の伝搬パターンを近似する新しいグラフスペクトルスカラー化法を提案する。
提案手法では,入力ノード機能に線形レイヤを適用でき,エンドツーエンドのトレーニングや生の機能の処理が可能となる。
論文 参考訳(メタデータ) (2025-01-08T15:36:19Z) - LASE: Learned Adjacency Spectral Embeddings [7.612218105739107]
グラフ入力から結節隣接スペクトル埋め込み(ASE)を学習する。
LASEは解釈可能で、パラメータ効率が高く、未観測のエッジを持つ入力に対して堅牢である。
LASEレイヤは、Graph Convolutional Network (GCN)と完全に接続されたGraph Attention Network (GAT)モジュールを組み合わせる。
論文 参考訳(メタデータ) (2024-12-23T17:35:19Z) - Rank and Align: Towards Effective Source-free Graph Domain Adaptation [16.941755478093153]
グラフニューラルネットワーク(GNN)は、グラフ領域適応において素晴らしいパフォーマンスを達成した。
しかし、プライバシやストレージ上の懸念から、大規模なソースグラフは現実のシナリオでは利用できない可能性がある。
そこで我々は,Range and Align (RNA)と呼ばれる新しいGNNベースのアプローチを導入し,ロバストセマンティクス学習のためのスペクトルセレーションとグラフ類似性をランク付けする。
論文 参考訳(メタデータ) (2024-08-22T08:00:50Z) - Noise-Resilient Unsupervised Graph Representation Learning via Multi-Hop Feature Quality Estimation [53.91958614666386]
グラフニューラルネットワーク(GNN)に基づく教師なしグラフ表現学習(UGRL)
マルチホップ特徴量推定(MQE)に基づく新しいUGRL法を提案する。
論文 参考訳(メタデータ) (2024-07-29T12:24:28Z) - Deep Graph Neural Networks via Posteriori-Sampling-based Node-Adaptive Residual Module [65.81781176362848]
グラフニューラルネットワーク(GNN)は、近隣情報収集を通じてグラフ構造化データから学習することができる。
レイヤーの数が増えるにつれて、ノード表現は区別不能になり、オーバー・スムーシング(over-smoothing)と呼ばれる。
我々は,textbfPosterior-Sampling-based, Node-distinguish Residual Module (PSNR)を提案する。
論文 参考訳(メタデータ) (2023-05-09T12:03:42Z) - Complete the Missing Half: Augmenting Aggregation Filtering with
Diversification for Graph Convolutional Neural Networks [46.14626839260314]
現在のグラフニューラルネットワーク(GNN)は、特定のデータセットで学習するすべてのGNNモデルに根ざした問題要因である可能性が示されている。
集約操作をそれらの双対、すなわち、ノードをより明確にし、アイデンティティを保存する多様化演算子で拡張する。
このような拡張は、アグリゲーションを2チャネルのフィルタリングプロセスに置き換え、理論上、ノード表現を豊かにするのに役立つ。
実験では,モデルの望ましい特性と,9ノード分類タスクのベースライン上での大幅な性能向上について検討した。
論文 参考訳(メタデータ) (2022-12-21T07:24:03Z) - Local Augmentation for Graph Neural Networks [78.48812244668017]
本稿では,局所的な部分グラフ構造によりノード特性を向上する局所拡張を提案する。
局所的な拡張に基づいて、プラグイン・アンド・プレイ方式で任意のGNNモデルに適用可能な、LA-GNNという新しいフレームワークをさらに設計する。
論文 参考訳(メタデータ) (2021-09-08T18:10:08Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
グラフニューラルネットワーク(GNN)は、ノード近傍の情報を集約し変換することで、グラフ構造とノードの特徴を探索する。
グラフ構造を利用してノード類似性を効果的かつ効率的に保存できるSimP-GCNを提案する。
本研究は,SimP-GCNが3つの分類グラフと4つの非補助グラフを含む7つのベンチマークデータセットに対して有効であることを示す。
論文 参考訳(メタデータ) (2020-11-19T04:18:01Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
置換等価性と近接認識性は、GNNにとって非常に望ましい2つの重要な特性である。
既存のGNNは、主にメッセージパッシング機構に基づいており、同時に2つの特性を保存できないことを示す。
ノードの近さを保つため,既存のGNNをノード表現で拡張する。
論文 参考訳(メタデータ) (2020-09-05T16:46:56Z) - Complete the Missing Half: Augmenting Aggregation Filtering with
Diversification for Graph Convolutional Networks [46.14626839260314]
我々は、現在のグラフニューラルネットワーク(GNN)が、特定のデータセットで学習するすべてのGNNメソッドの根底にある問題である可能性を示している。
集約操作をそれらの双対、すなわち、ノードをより明確にし、アイデンティティを保存する多様化演算子で拡張する。
このような拡張は、アグリゲーションを2チャネルのフィルタリングプロセスに置き換え、理論上、ノード表現を豊かにするのに役立つ。
実験では,モデルの望ましい特性と,9ノード分類タスクのベースライン上での大幅な性能向上について検討した。
論文 参考訳(メタデータ) (2020-08-20T08:45:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。