RelationalFactQA: A Benchmark for Evaluating Tabular Fact Retrieval from Large Language Models
- URL: http://arxiv.org/abs/2505.21409v1
- Date: Tue, 27 May 2025 16:33:38 GMT
- Title: RelationalFactQA: A Benchmark for Evaluating Tabular Fact Retrieval from Large Language Models
- Authors: Dario Satriani, Enzo Veltri, Donatello Santoro, Paolo Papotti,
- Abstract summary: We demonstrate that fact retrieval is substantially more difficult than isolated point-wise queries.<n>Our experiments reveal that even stateofthe-art LLMs struggle significantly, not exceeding 25% factual accuracy.<n>These findings underscore limitations in current LLMs' ability to synthesize structured factual knowledge.
- Score: 9.211266032947497
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Factuality in Large Language Models (LLMs) is a persistent challenge. Current benchmarks often assess short factual answers, overlooking the critical ability to generate structured, multi-record tabular outputs from parametric knowledge. We demonstrate that this relational fact retrieval is substantially more difficult than isolated point-wise queries, even when individual facts are known to the model, exposing distinct failure modes sensitive to output dimensionality (e.g., number of attributes or records). To systematically evaluate this under-explored capability, we introduce RelationalFactQA, a new benchmark featuring diverse natural language questions (paired with SQL) and gold-standard tabular answers, specifically designed to assess knowledge retrieval in a structured format. RelationalFactQA enables analysis across varying query complexities, output sizes, and data characteristics. Our experiments reveal that even state-of-the-art LLMs struggle significantly, not exceeding 25% factual accuracy in generating relational outputs, with performance notably degrading as output dimensionality increases. These findings underscore critical limitations in current LLMs' ability to synthesize structured factual knowledge and establish RelationalFactQA as a crucial resource for measuring future progress in LLM factuality.
Related papers
- LLM-Symbolic Integration for Robust Temporal Tabular Reasoning [69.27153114778748]
We introduce TempTabQA-C, a synthetic dataset designed for systematic and controlled evaluations.<n>This structured approach allows Large Language Models (LLMs) to generate and executesql queries, enhancing generalization and mitigating biases.
arXiv Detail & Related papers (2025-06-06T05:14:04Z) - DSR-Bench: Evaluating the Structural Reasoning Abilities of LLMs via Data Structures [20.596558700597644]
Large language models (LLMs) are increasingly deployed for real-world tasks that fundamentally involve data manipulation.<n>A core requirement is the ability to perform structural reasoning--that is, to understand and reason about data relationships.<n>We introduce DSR-Bench, a novel benchmark evaluating LLMs' structural reasoning capabilities through data structures.
arXiv Detail & Related papers (2025-05-29T23:24:53Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - Enhancing Multi-Hop Fact Verification with Structured Knowledge-Augmented Large Language Models [26.023148371263012]
We propose a novel Structured Knowledge-Augmented LLM-based Network (LLM-SKAN) for multi-hop fact verification.<n>Specifically, we utilize an LLM-driven Knowledge Extractor to capture fine-grained information, including entities and their complicated relations.<n>The experimental results on four common-used datasets demonstrate the effectiveness and superiority of our model.
arXiv Detail & Related papers (2025-03-11T14:47:24Z) - FACT-AUDIT: An Adaptive Multi-Agent Framework for Dynamic Fact-Checking Evaluation of Large Language Models [79.41859481668618]
Large Language Models (LLMs) have significantly advanced the fact-checking studies.<n>Existing automated fact-checking evaluation methods rely on static datasets and classification metrics.<n>We introduce FACT-AUDIT, an agent-driven framework that adaptively and dynamically assesses LLMs' fact-checking capabilities.
arXiv Detail & Related papers (2025-02-25T07:44:22Z) - Reasoning Factual Knowledge in Structured Data with Large Language Models [26.00548862629018]
Large language models (LLMs) have made remarkable progress in various natural language processing tasks.
Structured data possesses unique characteristics that differ from the unstructured texts used for pretraining.
We propose a benchmark named StructFact to evaluate the structural reasoning capabilities of LLMs in inferring factual knowledge.
arXiv Detail & Related papers (2024-08-22T08:05:09Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks [0.0]
Relation Extraction (RE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs)
Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area.
This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach.
arXiv Detail & Related papers (2024-06-20T21:27:57Z) - Optimizing Language Model's Reasoning Abilities with Weak Supervision [48.60598455782159]
We present textscPuzzleBen, a weakly supervised benchmark that comprises 25,147 complex questions, answers, and human-generated rationales.
A unique aspect of our dataset is the inclusion of 10,000 unannotated questions, enabling us to explore utilizing fewer supersized data to boost LLMs' inference capabilities.
arXiv Detail & Related papers (2024-05-07T07:39:15Z) - FactCHD: Benchmarking Fact-Conflicting Hallucination Detection [64.4610684475899]
FactCHD is a benchmark designed for the detection of fact-conflicting hallucinations from LLMs.
FactCHD features a diverse dataset that spans various factuality patterns, including vanilla, multi-hop, comparison, and set operation.
We introduce Truth-Triangulator that synthesizes reflective considerations by tool-enhanced ChatGPT and LoRA-tuning based on Llama2.
arXiv Detail & Related papers (2023-10-18T16:27:49Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.