Silence is Not Consensus: Disrupting Agreement Bias in Multi-Agent LLMs via Catfish Agent for Clinical Decision Making
- URL: http://arxiv.org/abs/2505.21503v1
- Date: Tue, 27 May 2025 17:59:50 GMT
- Title: Silence is Not Consensus: Disrupting Agreement Bias in Multi-Agent LLMs via Catfish Agent for Clinical Decision Making
- Authors: Yihan Wang, Qiao Yan, Zhenghao Xing, Lihao Liu, Junjun He, Chi-Wing Fu, Xiaowei Hu, Pheng-Ann Heng,
- Abstract summary: We present a new concept called Catfish Agent, a role-specialized LLM designed to inject structured dissent and counter silent agreement.<n>Inspired by the catfish effect'' in organizational psychology, the Catfish Agent is designed to challenge emerging consensus to stimulate deeper reasoning.
- Score: 80.94208848596215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have demonstrated strong potential in clinical question answering, with recent multi-agent frameworks further improving diagnostic accuracy via collaborative reasoning. However, we identify a recurring issue of Silent Agreement, where agents prematurely converge on diagnoses without sufficient critical analysis, particularly in complex or ambiguous cases. We present a new concept called Catfish Agent, a role-specialized LLM designed to inject structured dissent and counter silent agreement. Inspired by the ``catfish effect'' in organizational psychology, the Catfish Agent is designed to challenge emerging consensus to stimulate deeper reasoning. We formulate two mechanisms to encourage effective and context-aware interventions: (i) a complexity-aware intervention that modulates agent engagement based on case difficulty, and (ii) a tone-calibrated intervention articulated to balance critique and collaboration. Evaluations on nine medical Q&A and three medical VQA benchmarks show that our approach consistently outperforms both single- and multi-agent LLMs frameworks, including leading commercial models such as GPT-4o and DeepSeek-R1.
Related papers
- DoctorAgent-RL: A Multi-Agent Collaborative Reinforcement Learning System for Multi-Turn Clinical Dialogue [14.95390953068765]
Large language models (LLMs) have demonstrated excellent capabilities in the field of biomedical question answering, but their application in real-world clinical consultations still faces core challenges.<n>We propose Ours, a reinforcement learning (RL)-based multi-agent collaborative framework that models medical consultations as a dynamic decision-making process under uncertainty.<n>Our approach shows immense practical value by reducing misdiagnosis risks in time-pressured settings, freeing clinicians for complex cases, and pioneering a strategy to optimize medical resource allocation and alleviate workforce shortages.
arXiv Detail & Related papers (2025-05-26T07:48:14Z) - Assessing Collective Reasoning in Multi-Agent LLMs via Hidden Profile Tasks [5.120446836495469]
We introduce the Hidden Profile paradigm from social psychology as a diagnostic testbed for multi-agent LLM systems.<n>By distributing critical information asymmetrically across agents, the paradigm reveals how inter-agent dynamics support or hinder collective reasoning.<n>We find that while cooperative agents are prone to over-coordination in collective settings, increased contradiction impairs group convergence.
arXiv Detail & Related papers (2025-05-15T19:22:54Z) - MAGI: Multi-Agent Guided Interview for Psychiatric Assessment [50.6150986786028]
We present MAGI, the first framework that transforms the gold-standard Mini International Neuropsychiatric Interview (MINI) into automatic computational navigation.<n>We show that MAGI advances LLM- assisted mental health assessment by combining clinical rigor, conversational adaptability, and explainable reasoning.
arXiv Detail & Related papers (2025-04-25T11:08:27Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
This study introduces LlaMADRS, a novel framework leveraging open-source Large Language Models (LLMs) to automate depression severity assessment.<n>We employ a zero-shot prompting strategy with carefully designed cues to guide the model in interpreting and scoring transcribed clinical interviews.<n>Our approach, tested on 236 real-world interviews, demonstrates strong correlations with clinician assessments.
arXiv Detail & Related papers (2025-01-07T08:49:04Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
We present AgentCOT, a llm-based autonomous agent framework.
At each step, AgentCOT selects an action and executes it to yield an intermediate result with supporting evidence.
We introduce two new strategies to enhance the performance of AgentCOT.
arXiv Detail & Related papers (2024-09-19T02:20:06Z) - AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments [2.567146936147657]
We introduce AgentClinic, a multimodal agent benchmark for evaluating large language models (LLM) in simulated clinical environments.<n>We find that solving MedQA problems in the sequential decision-making format of AgentClinic is considerably more challenging, resulting in diagnostic accuracies that can drop to below a tenth of the original accuracy.
arXiv Detail & Related papers (2024-05-13T17:38:53Z) - ArgMed-Agents: Explainable Clinical Decision Reasoning with LLM Disscusion via Argumentation Schemes [7.950883198425716]
ArgMed-Agents is a framework to enable large language models (LLMs) to make explainable clinical decision reasoning through interaction.<n>We construct a formal model of ArgMed-Agents and present conjectures for theoretical guarantees.<n> setup experiments show that ArgMed-Agents not only improves accuracy in complex clinical decision reasoning problems compared to other prompt methods, but more importantly, it provides users with decision explanations that increase their confidence.
arXiv Detail & Related papers (2024-03-10T19:47:00Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.