論文の概要: ReliableEval: A Recipe for Stochastic LLM Evaluation via Method of Moments
- arxiv url: http://arxiv.org/abs/2505.22169v1
- Date: Wed, 28 May 2025 09:40:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.538244
- Title: ReliableEval: A Recipe for Stochastic LLM Evaluation via Method of Moments
- Title(参考訳): ReliableEval: モーメント法による確率的LCM評価のためのレシピ
- Authors: Gili Lior, Eliya Habba, Shahar Levy, Avi Caciularu, Gabriel Stanovsky,
- Abstract要約: 本稿では,意味保存型摂動空間におけるモーメント評価手法について論じる。
GPT-4oやClaude-3.7-Sonnetのようなトップパフォーマンスモデルでさえ、かなりの迅速な感度を示す。
- 参考スコア(独自算出の注目度): 21.37415398600286
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LLMs are highly sensitive to prompt phrasing, yet standard benchmarks typically report performance using a single prompt, raising concerns about the reliability of such evaluations. In this work, we argue for a stochastic method of moments evaluation over the space of meaning-preserving prompt perturbations. We introduce a formal definition of reliable evaluation that accounts for prompt sensitivity, and suggest ReliableEval - a method for estimating the number of prompt resamplings needed to obtain meaningful results. Using our framework, we stochastically evaluate five frontier LLMs and find that even top-performing models like GPT-4o and Claude-3.7-Sonnet exhibit substantial prompt sensitivity. Our approach is model-, task-, and metric-agnostic, offering a recipe for meaningful and robust LLM evaluation.
- Abstract(参考訳): LLMは非常に敏感であるが、標準的なベンチマークでは1つのプロンプトを使用して性能を報告し、そのような評価の信頼性に関する懸念を提起する。
本研究では,意味保存型摂動空間におけるモーメント評価の確率的手法について論じる。
本稿では,素早い感度を考慮した信頼性評価の形式的定義を導入し,有意義な結果を得るために必要な素早い再サンプリング数を推定する方法であるReliableEvalを提案する。
GPT-4oやClaude-3.7-Sonnetのようなトップパフォーマンスモデルでさえ、かなりの迅速な感度を示すことがわかった。
我々のアプローチは、モデル、タスク、およびメートル法に依存しないもので、有意義でロバストなLCM評価のためのレシピを提供する。
関連論文リスト
- On Verbalized Confidence Scores for LLMs [25.160810008907397]
大規模言語モデル(LLM)の不確実性定量化は、その応答に対するより人間的な信頼を確立することができる。
この研究は、出力トークンの一部として信頼度スコアで不確実性を言語化するようLLM自身に求めることに重点を置いている。
我々は、異なるデータセット、モデル、およびプロンプトメソッドに関して、言語化された信頼度スコアの信頼性を評価する。
論文 参考訳(メタデータ) (2024-12-19T11:10:36Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
大言語モデル(LLM)は、要約やダイアログベースのタスクにおいて、非標準化メトリクスの自動評価器として機能する。
人間の判断に比較して,LLMが品質評価指標としていかに優れているかを検討するために,複数のプロンプト戦略にまたがる実験を行った。
論文 参考訳(メタデータ) (2024-12-12T13:31:58Z) - SelfPrompt: Autonomously Evaluating LLM Robustness via Domain-Constrained Knowledge Guidelines and Refined Adversarial Prompts [0.6291443816903801]
本稿では,大規模言語モデル(LLM)のロバスト性を自律的に評価する新しいフレームワークを提案する。
本稿では,ドメイン制約付き知識グラフ三重項から記述文を生成し,敵対的プロンプトを定式化する。
この自己評価機構により、LCMは外部ベンチマークを必要とせずにその堅牢性を評価することができる。
論文 参考訳(メタデータ) (2024-12-01T10:58:53Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal [64.9938658716425]
SORRY-Benchは、安全でないユーザ要求を認識し拒否する大規模言語モデル(LLM)能力を評価するためのベンチマークである。
まず、既存の手法では、安全でないトピックの粗い分類を使い、いくつかのきめ細かいトピックを過剰に表現している。
第二に、プロンプトの言語的特徴とフォーマッティングは、様々な言語、方言など、多くの評価において暗黙的にのみ考慮されているように、しばしば見過ごされる。
論文 参考訳(メタデータ) (2024-06-20T17:56:07Z) - UBENCH: Benchmarking Uncertainty in Large Language Models with Multiple Choice Questions [10.28688988951815]
UBENCHは、大きな言語モデルを評価するためのベンチマークである。
これには、知識、言語、理解、推論能力に関する3,978の質問が含まれている。
また,15個のLPMの信頼性を評価し,GLM4が最も優れていることを発見した。
論文 参考訳(メタデータ) (2024-06-18T16:50:38Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - How Reliable Are Automatic Evaluation Methods for Instruction-Tuned LLMs? [3.1706553206969925]
このような手法のメタ評価を行い、その信頼性を幅広いタスクにわたって評価する。
自動評価手法は、特定の条件下で人間の評価を近似することができるが、その妥当性は文脈に依存している。
本研究は,命令調整型LLMの開発と評価において,自動手法の適用方法や解釈方法の理解を深めるものである。
論文 参考訳(メタデータ) (2024-02-16T15:48:33Z) - Flames: Benchmarking Value Alignment of LLMs in Chinese [86.73527292670308]
本稿では,Flamesという値アライメントベンチマークを提案する。
一般的な無害の原則と、特定の中国の価値観を統合するユニークな道徳的側面の両方を包含している。
以上の結果から, 評価されたLLMはフラムに対して比較的低い性能を示した。
論文 参考訳(メタデータ) (2023-11-12T17:18:21Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。