論文の概要: Numerical Optimization Strategies for the Variational Hamiltonian Ansatz in Noisy Quantum Environments
- arxiv url: http://arxiv.org/abs/2505.22398v2
- Date: Thu, 29 May 2025 10:30:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-30 13:10:25.796143
- Title: Numerical Optimization Strategies for the Variational Hamiltonian Ansatz in Noisy Quantum Environments
- Title(参考訳): 雑音量子環境における変分ハミルトンアンザッツの数値最適化法
- Authors: S. Illésová, V. Novák, T. Bezděk, C. Possel, M. Beseda,
- Abstract要約: tVHAを用いた変分量子化学の8つの最適化アルゴリズムのベンチマークを行う。
ノイズのないサンプリングノイズ条件下では,$H$,$H_4$,$LiH$の性能を評価する。
ノイズサンプリングによって設定された精度限界を同定し,約1000発以上のリターンを減少させる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We conduct a benchmark of eight optimization algorithms for variational quantum chemistry using the tVHA, evaluating performance on $H_2$, $H_4$, and $LiH$ (in both full and active spaces) under noiseless and sampling noise conditions. Sampling noise fundamentally alters optimizer behavior, with gradient-based methods performing best in ideal conditions, while population-based algorithms, such as CMA-ES, show greater resilience under noise. Hartree-Fock initialization reduces the number of function evaluations by 27-60% and consistently yields higher final accuracy compared to random starting points. We identify a precision limit set by sampling noise, with diminishing returns beyond approximately 1000 shots.
- Abstract(参考訳): tVHAを用いた変分量子化学の8つの最適化アルゴリズムのベンチマークを行い,ノイズ条件およびサンプリングノイズ条件下での$H_2$,$H_4$,$LiH$の性能評価を行った。
CMA-ESのような個体群に基づくアルゴリズムは、ノイズ下でのレジリエンスをより高めている。
Hartree-Fock初期化は、関数評価の回数を27-60%削減し、ランダムな開始点よりも高い最終精度を得る。
ノイズサンプリングによって設定された精度限界を同定し,約1000発以上のリターンを減少させる。
関連論文リスト
- Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
重み付き雑音下でのグラディエントDescence(SGD)の収束を確実にする上での勾配正規化とクリッピングの役割について検討する。
我々の研究は、重尾雑音下でのSGDの勾配正規化の利点を示す最初の理論的証拠を提供する。
我々は、勾配正規化とクリッピングを取り入れた加速SGD変種を導入し、さらに重み付き雑音下での収束率を高めた。
論文 参考訳(メタデータ) (2024-10-21T22:40:42Z) - An Adaptive Re-evaluation Method for Evolution Strategy under Additive Noise [3.92625489118339]
本稿では,加法的なガウスホワイトノイズによる関数値の最適再評価数を適応的に選択する手法を提案する。
実験では,CMA-ESのノイズハンドリング手法を人工的なテスト関数の集合上で実験的に比較した。
論文 参考訳(メタデータ) (2024-09-25T09:10:21Z) - Stochastic Zeroth-Order Optimization under Strongly Convexity and Lipschitz Hessian: Minimax Sample Complexity [59.75300530380427]
本稿では,アルゴリズムが検索対象関数の雑音評価にのみアクセス可能な2次スムーズかつ強い凸関数を最適化する問題を考察する。
本研究は, ミニマックス単純後悔率について, 一致した上界と下界を発達させることにより, 初めて厳密な評価を行ったものである。
論文 参考訳(メタデータ) (2024-06-28T02:56:22Z) - Improving Quantum Approximate Optimization by Noise-Directed Adaptive Remapping [3.47862118034022]
ノイズ指向リマッピング(Noss-Directed Remapping, NDAR)は、ある種のノイズを利用して二進最適化問題を解決するアルゴリズムである。
我々は、グローバルなアトラクタ状態を特徴とするダイナミックスを備えたノイズの多い量子プロセッサへのアクセスを検討する。
我々のアルゴリズムは、ノイズアトラクターを高品質な解に変換する方法で、コスト関数ハミルトニアンを反復的にゲージ変換することでノイズアトラクター状態をブートストラップする。
論文 参考訳(メタデータ) (2024-04-01T18:28:57Z) - A Comparison of Various Classical Optimizers for a Variational Quantum
Linear Solver [0.0]
変分型ハイブリッド量子古典アルゴリズム(VHQCAs)は、ノイズの多い量子デバイス上で動作することを目的とした量子アルゴリズムのクラスである。
これらのアルゴリズムは、パラメータ化量子回路(アンサッツ)と量子古典フィードバックループを用いる。
古典的なデバイスは、量子デバイス上ではるかに効率的に計算できるコスト関数を最小限に抑えるためにパラメータを最適化するために使用される。
論文 参考訳(メタデータ) (2021-06-16T10:40:00Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Modeling and mitigation of cross-talk effects in readout noise with
applications to the Quantum Approximate Optimization Algorithm [0.0]
雑音の緩和は、上界を導出する誤差まで行うことができる。
ノイズモデルとエラー軽減スキームの両方をテストするためにIBMのデバイスを使用した15(23)量子ビットの実験。
浅層深度ランダム回路によって生成されるHaar-random量子状態と状態に対して、同様の効果が期待できることを示す。
論文 参考訳(メタデータ) (2021-01-07T02:19:58Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
強凸関数のゼロ次最適化問題について検討する。
予測勾配降下アルゴリズムのランダム化近似を考察する。
その結果,0次アルゴリズムはサンプルの複雑性や問題パラメータの点でほぼ最適であることが示唆された。
論文 参考訳(メタデータ) (2020-06-14T10:42:23Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。