A Benchmark Dataset for Graph Regression with Homogeneous and Multi-Relational Variants
- URL: http://arxiv.org/abs/2505.23875v1
- Date: Thu, 29 May 2025 12:59:36 GMT
- Title: A Benchmark Dataset for Graph Regression with Homogeneous and Multi-Relational Variants
- Authors: Peter Samoaa, Marcus Vukojevic, Morteza Haghir Chehreghani, Antonio Longa,
- Abstract summary: We introduce RelSC, a new graph-regression dataset built from program graphs.<n>Each graph is labelled with the execution-time cost of the corresponding program.<n>We evaluate a diverse set of graph neural network architectures on both variants of RelSC.
- Score: 3.037387520023979
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-level regression underpins many real-world applications, yet public benchmarks remain heavily skewed toward molecular graphs and citation networks. This limited diversity hinders progress on models that must generalize across both homogeneous and heterogeneous graph structures. We introduce RelSC, a new graph-regression dataset built from program graphs that combine syntactic and semantic information extracted from source code. Each graph is labelled with the execution-time cost of the corresponding program, providing a continuous target variable that differs markedly from those found in existing benchmarks. RelSC is released in two complementary variants. RelSC-H supplies rich node features under a single (homogeneous) edge type, while RelSC-M preserves the original multi-relational structure, connecting nodes through multiple edge types that encode distinct semantic relationships. Together, these variants let researchers probe how representation choice influences model behaviour. We evaluate a diverse set of graph neural network architectures on both variants of RelSC. The results reveal consistent performance differences between the homogeneous and multi-relational settings, emphasising the importance of structural representation. These findings demonstrate RelSC's value as a challenging and versatile benchmark for advancing graph regression methods.
Related papers
- Self-Reinforced Graph Contrastive Learning [7.49025068464945]
We propose SRGCL (Self-Reinforced Graph Contrastive Learning), a novel framework to dynamically evaluate and select high-quality positive pairs.<n>In experiments on diverse graph-level classification tasks, SRGCL consistently outperforms state-of-the-art GCL methods.
arXiv Detail & Related papers (2025-05-19T18:45:54Z) - Multi-Relation Graph-Kernel Strengthen Network for Graph-Level Clustering [10.67474681549171]
We propose a novel Multi-Relation Graph- Kernel Strengthen Network for Graph-Level Clustering (MGSN)<n>MGSN constructs multi-relation graphs to capture diverse semantic relationships between nodes and graphs.<n>A relation-aware representation refinement strategy is designed, which adaptively aligns multi-relation information across views.
arXiv Detail & Related papers (2025-04-02T11:17:15Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - HiGPT: Heterogeneous Graph Language Model [27.390123898556805]
Heterogeneous graph learning aims to capture complex relationships and diverse semantics among entities in a heterogeneous graph.
Existing frameworks for heterogeneous graph learning have limitations in generalizing across diverse heterogeneous graph datasets.
We propose HiGPT, a general large graph model with Heterogeneous graph instruction-tuning paradigm.
arXiv Detail & Related papers (2024-02-25T08:07:22Z) - A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph Sampling [33.50085646298074]
We propose a novel framework that combines Graph Neural Network (GNN) and Generative Adrial Network (GAN) to enhance classification for underrepresented node classes.
The framework incorporates an advanced edge generation and selection module, enabling the simultaneous creation of synthetic nodes and edges.
arXiv Detail & Related papers (2023-12-11T16:52:20Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
We propose a novel graph-based framework to leverage the inter-relationships among different types of nuclei for WSI analysis.
Specifically, we formulate the WSI as a heterogeneous graph with "nucleus-type" attribute to each node and a semantic attribute similarity to each edge.
Our framework outperforms the state-of-the-art methods with considerable margins on various tasks.
arXiv Detail & Related papers (2023-07-09T14:43:40Z) - GraphDCA -- a Framework for Node Distribution Comparison in Real and
Synthetic Graphs [72.51835626235368]
We argue that when comparing two graphs, the distribution of node structural features is more informative than global graph statistics.
We present GraphDCA - a framework for evaluating similarity between graphs based on the alignment of their respective node representation sets.
arXiv Detail & Related papers (2022-02-08T14:19:19Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Diversified Multiscale Graph Learning with Graph Self-Correction [55.43696999424127]
We propose a diversified multiscale graph learning model equipped with two core ingredients.
A graph self-correction (GSC) mechanism to generate informative embedded graphs, and a diversity boosting regularizer (DBR) to achieve a comprehensive characterization of the input graph.
Experiments on popular graph classification benchmarks show that the proposed GSC mechanism leads to significant improvements over state-of-the-art graph pooling methods.
arXiv Detail & Related papers (2021-03-17T16:22:24Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.