論文の概要: Proxy Target: Bridging the Gap Between Discrete Spiking Neural Networks and Continuous Control
- arxiv url: http://arxiv.org/abs/2505.24161v2
- Date: Thu, 23 Oct 2025 05:58:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-25 03:08:07.224955
- Title: Proxy Target: Bridging the Gap Between Discrete Spiking Neural Networks and Continuous Control
- Title(参考訳): Proxy Target:離散スパイクニューラルネットワークと連続制御のギャップを埋める
- Authors: Zijie Xu, Tong Bu, Zecheng Hao, Jianhao Ding, Zhaofei Yu,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上で低レイテンシかつエネルギー効率の意思決定を提供する。
連続制御のためのほとんどの連続制御アルゴリズムは、人工ニューラルネットワーク(ANN)のために設計されている。
このミスマッチはSNNのトレーニングを不安定にし、性能を劣化させる。
離散SNNと連続制御アルゴリズムのギャップを埋める新しいプロキシターゲットフレームワークを提案する。
- 参考スコア(独自算出の注目度): 59.65431931190187
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking Neural Networks (SNNs) offer low-latency and energy-efficient decision making on neuromorphic hardware, making them attractive for Reinforcement Learning (RL) in resource-constrained edge devices. However, most RL algorithms for continuous control are designed for Artificial Neural Networks (ANNs), particularly the target network soft update mechanism, which conflicts with the discrete and non-differentiable dynamics of spiking neurons. We show that this mismatch destabilizes SNN training and degrades performance. To bridge the gap between discrete SNNs and continuous-control algorithms, we propose a novel proxy target framework. The proxy network introduces continuous and differentiable dynamics that enable smooth target updates, stabilizing the learning process. Since the proxy operates only during training, the deployed SNN remains fully energy-efficient with no additional inference overhead. Extensive experiments on continuous control benchmarks demonstrate that our framework consistently improves stability and achieves up to $32\%$ higher performance across various spiking neuron models. Notably, to the best of our knowledge, this is the first approach that enables SNNs with simple Leaky Integrate and Fire (LIF) neurons to surpass their ANN counterparts in continuous control. This work highlights the importance of SNN-tailored RL algorithms and paves the way for neuromorphic agents that combine high performance with low power consumption. Code is available at https://github.com/xuzijie32/Proxy-Target.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上で低レイテンシでエネルギー効率の意思決定を提供するため、リソース制約エッジデバイスにおいて強化学習(RL)を魅力的なものにしている。
しかしながら、連続制御のためのほとんどのRLアルゴリズムは、特にスパイキングニューロンの離散的および非微分可能ダイナミクスと矛盾するターゲットネットワークソフト更新メカニズムのために設計されている。
このミスマッチはSNNのトレーニングを不安定にし、性能を劣化させる。
離散SNNと連続制御アルゴリズムのギャップを埋めるため,新しいプロキシターゲットフレームワークを提案する。
プロキシネットワークは、スムーズなターゲット更新を可能にし、学習プロセスを安定化する、継続的かつ差別化可能なダイナミクスを導入している。
プロキシはトレーニング中のみ動作するため、デプロイされたSNNは完全にエネルギー効率が良く、追加の推論オーバーヘッドは発生しない。
連続制御ベンチマークの大規模な実験により、我々のフレームワークは安定性を継続的に改善し、様々なスパイクニューロンモデルに対して最大32\%の高パフォーマンスを実現している。
私たちの知る限りでは、これは単純な Leaky Integrate and Fire (LIF) ニューロンを持つ SNN が連続的な制御において自身の ANN ニューロンを超えることができる最初のアプローチである。
この研究は、SNN調整されたRLアルゴリズムの重要性を強調し、高性能と低消費電力を組み合わせたニューロモルフィックエージェントの道を開く。
コードはhttps://github.com/xuzijie32/Proxy-Target.comで入手できる。
関連論文リスト
- Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - LC-TTFS: Towards Lossless Network Conversion for Spiking Neural Networks
with TTFS Coding [55.64533786293656]
我々は,AIタスクにおいて,ANNのアクティベーション値とSNNのスパイク時間とのほぼ完全なマッピングを実現することができることを示す。
この研究は、電力制約のあるエッジコンピューティングプラットフォームに超低消費電力のTTFSベースのSNNをデプロイする方法を舗装している。
論文 参考訳(メタデータ) (2023-10-23T14:26:16Z) - High-performance deep spiking neural networks with 0.3 spikes per neuron [9.01407445068455]
バイオインスパイアされたスパイクニューラルネットワーク(SNN)を人工ニューラルネットワーク(ANN)より訓練することは困難である
深部SNNモデルのトレーニングは,ANNと全く同じ性能が得られることを示す。
我々のSNNは1ニューロンあたり0.3スパイク以下で高性能な分類を行い、エネルギー効率の良い実装に役立てる。
論文 参考訳(メタデータ) (2023-06-14T21:01:35Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training [0.8602553195689513]
従来の人工ニューラルネットワーク(ANN)の代替として、スパイキングニューラルネットワーク(SNN)が注目を集めている。
本稿では,SNNにおけるスキップ接続の影響について検討し,ANNからSNNへのモデル適応を行うハイパーパラメータ最適化手法を提案する。
本研究では,SNNの位置,タイプ,回数を最適化することで,SNNの精度と効率を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-03-23T07:57:32Z) - Optimising Event-Driven Spiking Neural Network with Regularisation and Cutoff [31.61525648918492]
スパイキングニューラルネットワーク(SNN)は、ニューラルネットワークのより近い模倣を提供する。
現在のSNNは一定期間にわたって推測するように訓練されている。
本稿では,効率的な推論を実現するため,推論中にいつでもSNNを停止できるSNNのカットオフを提案する。
論文 参考訳(メタデータ) (2023-01-23T16:14:09Z) - Examining the Robustness of Spiking Neural Networks on Non-ideal
Memristive Crossbars [4.184276171116354]
ニューラルネットワークの低消費電力代替としてスパイキングニューラルネットワーク(SNN)が登場している。
本研究では,SNNの性能に及ぼすクロスバー非理想性と本質性の影響について検討した。
論文 参考訳(メタデータ) (2022-06-20T07:07:41Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Pruning of Deep Spiking Neural Networks through Gradient Rewiring [41.64961999525415]
スパイキングニューラルネットワーク(SNN)は、その生物学的妥当性とニューロモルフィックチップの高エネルギー効率により、非常に重要視されている。
ほとんどの既存の方法は、ANNsとSNNsの違いを無視するSNNsに人工ニューラルネットワーク(ANNs)のプルーニングアプローチを直接適用する。
本稿では,ネットワーク構造を無訓練でシームレスに最適化可能な,snsの接続性と重み付けの合同学習アルゴリズムgradle rewiring (gradr)を提案する。
論文 参考訳(メタデータ) (2021-05-11T10:05:53Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
spiking neural networks (snns) は生物学に触発されたニューラルネットワーク (anns) である。
しきい値バランスとソフトリセット機構を組み合わせることで、重みをターゲットSNNに転送する新しい戦略パイプラインを提案する。
提案手法は,SNNのエネルギーとメモリの制限によるサポートを向上し,組込みプラットフォームに組み込むことが期待できる。
論文 参考訳(メタデータ) (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。