論文の概要: QGAN-based data augmentation for hybrid quantum-classical neural networks
- arxiv url: http://arxiv.org/abs/2505.24780v1
- Date: Fri, 30 May 2025 16:42:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:53.07813
- Title: QGAN-based data augmentation for hybrid quantum-classical neural networks
- Title(参考訳): ハイブリッド量子古典ニューラルネットワークのためのQGANに基づくデータ拡張
- Authors: Run-Ze He, Jun-Jian Su, Su-Juan Qin, Zheng-Ping Jin, Fei Gao,
- Abstract要約: 我々は、量子生成逆数ネットワーク(QGAN)とハイブリッド量子古典ニューラルネットワーク(HQCNN)を統合し、拡張フレームワークを開発する。
MNISTデータセットのシミュレーション実験により、QGANは従来のデータ拡張手法や古典的なGANよりも優れていることが示された。
これはQGANがモデルを単純化し、高品質なデータを生成し、HQCNNの精度と性能を向上させることを示唆している。
- 参考スコア(独自算出の注目度): 2.879702568241657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum neural networks converge faster and achieve higher accuracy than classical models. However, data augmentation in quantum machine learning remains underexplored. To tackle data scarcity, we integrate quantum generative adversarial networks (QGANs) with hybrid quantum-classical neural networks (HQCNNs) to develop an augmentation framework. We propose two strategies: a general approach to enhance data processing and classification across HQCNNs, and a customized strategy that dynamically generates samples tailored to the HQCNN's performance on specific data categories, improving its ability to learn from complex datasets. Simulation experiments on the MNIST dataset demonstrate that QGAN outperforms traditional data augmentation methods and classical GANs. Compared to baseline DCGAN, QGAN achieves comparable performance with half the parameters, balancing efficiency and effectiveness. This suggests that QGANs can simplify models and generate high-quality data, enhancing HQCNN accuracy and performance. These findings pave the way for applying quantum data augmentation techniques in machine learning.
- Abstract(参考訳): 量子ニューラルネットワークは、古典的モデルよりも早く収束し、高い精度を達成する。
しかし、量子機械学習におけるデータ拡張はまだ未定である。
データ不足に対処するために、我々は量子生成敵ネットワーク(QGAN)とハイブリッド量子古典ニューラルネットワーク(HQCNN)を統合し、拡張フレームワークを開発する。
HQCNN間でのデータ処理と分類を強化するための一般的なアプローチと、HQCNNの特定のデータカテゴリのパフォーマンスに合わせたサンプルを動的に生成するカスタマイズされた戦略を提案し、複雑なデータセットから学習する能力を向上する。
MNISTデータセットのシミュレーション実験により、QGANは従来のデータ拡張手法や古典的なGANよりも優れていることが示された。
ベースラインのDCGANと比較して、QGANは半分のパラメータで同等のパフォーマンスを実現し、効率と効率のバランスをとる。
これはQGANがモデルを単純化し、高品質なデータを生成し、HQCNNの精度と性能を向上させることを示唆している。
これらの知見は、機械学習に量子データ拡張技術を適用するための道を開いた。
関連論文リスト
- Instruction-Guided Autoregressive Neural Network Parameter Generation [49.800239140036496]
本稿では,多種多様なタスクやアーキテクチャにまたがるパラメータ合成を統一する自動回帰フレームワークIGPGを提案する。
ニューラルネットワーク重みのトークンを自動回帰的に生成することにより、IGPGは層間コヒーレンスを確保し、モデルとデータセット間の効率的な適応を可能にする。
複数のデータセットの実験により、IGPGは様々な事前訓練されたモデルを単一の柔軟な生成フレームワークに統合することを示した。
論文 参考訳(メタデータ) (2025-04-02T05:50:19Z) - Benchmarking Quantum Convolutional Neural Networks for Signal Classification in Simulated Gamma-Ray Burst Detection [29.259008600842517]
本研究は,ガンマ線バースト(GRB)に似た信号の同定に量子畳み込みニューラルネットワーク(QCNN)を用いたことを評価する。
量子シミュレータでトレーニングしたQCNNを用いて,Qiskitフレームワークを用いたハイブリッド量子古典機械学習手法を実装した。
QCNNは時系列データセット上で堅牢な性能を示し,高い精度でGRB信号の検出に成功した。
論文 参考訳(メタデータ) (2025-01-28T16:07:12Z) - Regression and Classification with Single-Qubit Quantum Neural Networks [0.0]
我々は、回帰処理と分類処理の両方にリソース効率が高くスケーラブルなSQQNN(Single-Qubit Quantum Neural Network)を使用する。
分類にはTaylor級数にインスパイアされた新しいトレーニング手法を導入する。
SQQNNは、MNISTデータセットを含む回帰および分類タスクにおいて、事実上エラーのない、強力なパフォーマンスを示す。
論文 参考訳(メタデータ) (2024-12-12T17:35:36Z) - Lean classical-quantum hybrid neural network model for image classification [12.353900068459446]
本稿では,変分回路の4層のみを用いて,効率的な分類性能を実現するLan Classical-Quantum Hybrid Neural Network (LCQHNN)を提案する。
我々の実験は、LCQHNNがMNIST、FashionMNIST、CIFAR-10データセットの100%、99.02%、85.55%の分類精度を達成することを示した。
論文 参考訳(メタデータ) (2024-12-03T00:37:11Z) - Parallel Proportional Fusion of Spiking Quantum Neural Network for Optimizing Image Classification [10.069224006497162]
量子・スパイキングニューラルネットワーク(PPF-QSNN)の並列比例融合(Parallel Proportional Fusion of Quantum and Spiking Neural Networks)と呼ばれる新しいアーキテクチャを導入する。
提案したPPF-QSNNは、既存のスパイクニューラルネットワークと、精度、損失、ロバストネスといったメトリクスにわたるシリアル量子ニューラルネットワークの両方より優れている。
本研究は、人工知能計算における量子優位性の発展と応用の基盤となるものである。
論文 参考訳(メタデータ) (2024-04-01T10:35:35Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
量子ニューラルネットワーク(QNN)は物理世界を理解する上で重要なツールとなっているが、その利点と限界は完全には理解されていない。
本稿では,多クラス分類タスクにおけるQCの問題依存力について検討する。
我々の研究はQNNの課題依存力に光を当て、その潜在的なメリットを評価するための実践的なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T10:46:40Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
本稿では,ClusterQと呼ばれるデータフリーな量子化手法を提案する。
意味的特徴のクラス間分離性を高めるために,特徴分布統計をクラスタ化し,整列する。
また、クラス内分散を組み込んで、クラスワイドモードの崩壊を解決する。
論文 参考訳(メタデータ) (2022-04-30T06:58:56Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - Hybrid Quantum-Classical Graph Convolutional Network [7.0132255816377445]
本研究は、HEPデータを学習するためのハイブリッド量子古典グラフ畳み込みネットワーク(QGCNN)を提供する。
提案フレームワークは,パラメータ数の観点から,古典的多層パーセプトロンと畳み込みニューラルネットワークの優位性を示す。
テスト精度に関して、QGCNNは、同じHEPデータセット上の量子畳み込みニューラルネットワークと同等のパフォーマンスを示している。
論文 参考訳(メタデータ) (2021-01-15T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。