What do professional software developers need to know to succeed in an age of Artificial Intelligence?
- URL: http://arxiv.org/abs/2506.00202v3
- Date: Mon, 23 Jun 2025 08:27:54 GMT
- Title: What do professional software developers need to know to succeed in an age of Artificial Intelligence?
- Authors: Matthew Kam, Cody Miller, Miaoxin Wang, Abey Tidwell, Irene A. Lee, Joyce Malyn-Smith, Beatriz Perez, Vikram Tiwari, Joshua Kenitzer, Andrew Macvean, Erin Barrar,
- Abstract summary: Generative AI is showing early evidence of productivity gains for software developers, but concerns persist regarding workforce disruption and deskilling.<n>We describe our research with 21 developers at the cutting edge of using AI, summarizing 12 of their work goals we uncovered, together with 75 associated tasks and the skills & knowledge for each.<n>We found that the skills & knowledge to be a successful AI-enhanced developer are organized into four domains.
- Score: 1.5774644021279332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI is showing early evidence of productivity gains for software developers, but concerns persist regarding workforce disruption and deskilling. We describe our research with 21 developers at the cutting edge of using AI, summarizing 12 of their work goals we uncovered, together with 75 associated tasks and the skills & knowledge for each, illustrating how developers use AI at work. From all of these, we distilled our findings in the form of 5 insights. We found that the skills & knowledge to be a successful AI-enhanced developer are organized into four domains (using Generative AI effectively, core software engineering, adjacent engineering, and adjacent non-engineering) deployed at critical junctures throughout a 6-step task workflow. In order to "future proof" developers for this age of AI, on-the-job learning initiatives and computer science degree programs will need to target both "soft" skills and the technical skills & knowledge in all four domains to reskill, upskill and safeguard against deskilling.
Related papers
- A roadmap for AI in robotics [55.87087746398059]
We are witnessing growing excitement in robotics at the prospect of leveraging the potential of AI to tackle some of the outstanding barriers to the full deployment of robots in our daily lives.<n>This article offers an assessment of what AI for robotics has achieved since the 1990s and proposes a short- and medium-term research roadmap listing challenges and promises.
arXiv Detail & Related papers (2025-07-26T15:18:28Z) - Code with Me or for Me? How Increasing AI Automation Transforms Developer Workflows [66.1850490474361]
We conduct the first academic study to explore developer interactions with coding agents.<n>We evaluate two leading copilot and agentic coding assistants, GitHub Copilot and OpenHands.<n>Our results show agents have the potential to assist developers in ways that surpass copilots.
arXiv Detail & Related papers (2025-07-10T20:12:54Z) - Challenges and Paths Towards AI for Software Engineering [55.95365538122656]
We discuss progress in AI for software engineering in threefold manner.<n>First, we provide a structured taxonomy of concrete tasks in AI for software engineering.<n>Second, we outline several key bottlenecks that limit current approaches.
arXiv Detail & Related papers (2025-03-28T17:17:57Z) - Curious, Critical Thinker, Empathetic, and Ethically Responsible: Essential Soft Skills for Data Scientists in Software Engineering [0.0]
Data scientists face challenges related to managing large volumes of data and addressing the societal impacts of AI algorithms.<n>This study aims to identify the key soft skills that data scientists need when working on AI-powered projects.
arXiv Detail & Related papers (2025-01-03T20:27:14Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We examine what is known about human wisdom and sketch a vision of its AI counterpart.<n>We argue that AI systems particularly struggle with metacognition.<n>We discuss how wise AI might be benchmarked, trained, and implemented.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Towards the Terminator Economy: Assessing Job Exposure to AI through LLMs [10.844598404826355]
One-third of U.S. employment is highly exposed to AI, primarily in high-skill jobs requiring a graduate or postgraduate level of education.<n>Even in high-skill occupations, AI exhibits high variability in task substitution, suggesting that AI and humans complement each other within the same occupation.<n>All results, models, and code are freely available online to allow the community to reproduce our results, compare outcomes, and use our work as a benchmark to monitor AI's progress over time.
arXiv Detail & Related papers (2024-07-27T08:14:18Z) - Using AI-Based Coding Assistants in Practice: State of Affairs, Perceptions, and Ways Forward [9.177785129949]
We aim to better understand how specifically developers are using AI assistants.
We carried out a large-scale survey aimed at how AI assistants are used.
arXiv Detail & Related papers (2024-06-11T23:10:43Z) - Visions of a Discipline: Analyzing Introductory AI Courses on YouTube [11.209406323898019]
We analyze the 20 most watched introductory AI courses on YouTube.
Introductory AI courses do not meaningfully engage with ethical or societal challenges of AI.
We recommend that introductory AI courses should highlight ethical challenges of AI to present a more balanced perspective.
arXiv Detail & Related papers (2024-05-31T01:48:42Z) - Lifelong learning challenges in the era of artificial intelligence: a computational thinking perspective [0.0]
The rapid advancement of artificial intelligence (AI) has brought significant challenges to the education and workforce skills required to take advantage of AI for human-AI collaboration in the workplace.
This paper provides a review of the challenges of lifelong learning in the era of AI from a computational thinking perspective.
arXiv Detail & Related papers (2024-05-30T08:46:11Z) - The application of artificial intelligence in software engineering: a
review challenging conventional wisdom [0.9651131604396904]
This survey chapter is a review of the most commonplace methods of AI applied to software engineering.
The review covers methods between years 1975-2017, for the requirements phase, 46 major AI-driven methods are found.
The purpose of this chapter is to answer the following questions: is there sufficient intelligence in the SE lifecycle?
arXiv Detail & Related papers (2021-08-03T15:59:59Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
The MineRL BASALT competition aims to spur forward research on this important class of techniques.
We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions.
We provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline.
arXiv Detail & Related papers (2021-07-05T12:18:17Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.