Experimental demonstration of generalized quantum fluctuation theorems in the presence of coherence
- URL: http://arxiv.org/abs/2506.00524v1
- Date: Sat, 31 May 2025 12:00:59 GMT
- Title: Experimental demonstration of generalized quantum fluctuation theorems in the presence of coherence
- Authors: Hui Li, Jie Xie, Hyukjoon Kwon, Yixin Zhao, M. S. Kim, Lijian Zhang,
- Abstract summary: We report the experimental validation of a quantum fluctuation theorem (QFT) in a photonic system.<n>Our experiment confirms that the ratio between the quasi-probabilities of the time-forward and any multiple time-reversal processes obeys a generalized Crooks QFT.<n>These findings underscore the fundamental symmetry between a general quantum process and its time reversal, providing an elementary toolkit to explore noisy quantum information processing.
- Score: 10.502237817201173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fluctuation theorems have elevated the second law of thermodynamics to a statistical realm by establishing a connection between time-forward and time-reversal probabilities, providing invaluable insight into nonequilibrium dynamics. While well established in classical systems, their quantum generalization, incorporating coherence and the diversity of quantum noise, remains open. We report the experimental validation of a quantum fluctuation theorem (QFT) in a photonic system, applicable to general quantum processes with nonclassical characteristics, including quasi-probabilistic descriptions of entropy production and multiple time-reversal processes. Our experiment confirms that the ratio between the quasi-probabilities of the time-forward and any multiple time-reversal processes obeys a generalized Crooks QFT. Moreover, coherence induced by a quantum process leads to the imaginary components of quantum entropy production, governing the phase factor in the QFT. These findings underscore the fundamental symmetry between a general quantum process and its time reversal, providing an elementary toolkit to explore noisy quantum information processing.
Related papers
- Quantum reservoir probing of quantum phase transitions [0.0]
We show that quantum phase transitions can be detected through localized out-of-equilibrium excitations induced by local quantum quenches.<n>The impacts of the local quenches vary across different quantum phases and are significantly suppressed by quantum fluctuations amplified near quantum critical points.<n>We demonstrate that the QRP can detect quantum phase transitions in the paradigmatic integrable and nonintegrable quantum spin systems, and even topological quantum phase transitions.
arXiv Detail & Related papers (2024-02-11T03:53:01Z) - Quadratic growth of Out-of-time ordered correlators in quantum kicked
rotor model [0.0]
We study the dynamics of Out-of-Time-Ordered Correlators (OTOCs) in quantum resonance condition for a kicked rotor model.
We find that the OTOCs of different types increase in a quadratic function of time, breaking the freezing of quantum scrambling induced by the dynamical localization under non-resonance condition.
arXiv Detail & Related papers (2024-01-19T23:17:31Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Phase Processing and its Applications in Estimating Phase and
Entropies [10.8525801756287]
"quantum phase processing" can directly apply arbitrary trigonometric transformations to eigenphases of a unitary operator.
Quantum phase processing can extract the eigen-information of quantum systems by simply measuring the ancilla qubit.
We propose a new quantum phase estimation algorithm without quantum Fourier transform, which requires the fewest ancilla qubits and matches the best performance so far.
arXiv Detail & Related papers (2022-09-28T17:41:19Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Quantum Fluctuation Theorem under Continuous Measurement and Feedback [0.0]
We derive the generalized fluctuation theorem under continuous quantum measurement and feedback.
The essence for the derivation is to newly introduce the operationally meaningful information, which we call quantum-classical-transfer entropy.
Our work reveals a fundamental connection between quantum thermodynamics and quantum information, which can be experimentally tested with artificial quantum systems.
arXiv Detail & Related papers (2021-12-17T07:02:34Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Detecting dynamical quantum phase transition via out-of-time-order
correlations in a solid-state quantum simulator [12.059058714600607]
We develop and experimentally demonstrate that out-of-time-order correlators can be used to detect nonoequilibrium phase transitions in the transverse field Ising model.
Further applications of this protocol could enable studies other of exotic phenomena such as many body localization, and tests of the holographic duality between quantum and gravitational systems.
arXiv Detail & Related papers (2020-01-17T14:28:42Z) - Experimental Observation of Equilibrium and Dynamical Quantum Phase
Transitions via Out-of-Time-Ordered Correlators [14.389514788367086]
We report the first experimental observation of EQPTs and DQPTs in a quantum spin chain via quench dynamics of OTOC on a nuclear magnetic resonance quantum simulator.
We demonstrate that the long-time average value of the OTOC in quantum quench signals the equilibrium quantum critical point and ordered quantum phases.
arXiv Detail & Related papers (2019-12-27T09:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.