論文の概要: Projection Pursuit Density Ratio Estimation
- arxiv url: http://arxiv.org/abs/2506.00866v1
- Date: Sun, 01 Jun 2025 07:15:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.227535
- Title: Projection Pursuit Density Ratio Estimation
- Title(参考訳): 投射需要密度比の推定
- Authors: Meilin Wang, Wei Huang, Mingming Gong, Zheng Zhang,
- Abstract要約: 密度比推定(DRE)は、複数の領域にまたがる幅広い応用のために、機械学習において最重要課題である。
密度比を推定するパラメトリック法は、モデルが不特定であればバイアスのある結果をもたらす可能性がある。
従来の非パラメトリック手法は、データ次元が大きければ次元の呪いに悩まされる。
本稿では,投射追跡近似に基づく新しいDRE手法を提案する。
- 参考スコア(独自算出の注目度): 44.71752951218575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Density ratio estimation (DRE) is a paramount task in machine learning, for its broad applications across multiple domains, such as covariate shift adaptation, causal inference, independence tests and beyond. Parametric methods for estimating the density ratio possibly lead to biased results if models are misspecified, while conventional non-parametric methods suffer from the curse of dimensionality when the dimension of data is large. To address these challenges, in this paper, we propose a novel approach for DRE based on the projection pursuit (PP) approximation. The proposed method leverages PP to mitigate the impact of high dimensionality while retaining the model flexibility needed for the accuracy of DRE. We establish the consistency and the convergence rate for the proposed estimator. Experimental results demonstrate that our proposed method outperforms existing alternatives in various applications.
- Abstract(参考訳): 密度比推定(DRE)は、共変量シフト適応、因果推論、独立テストなど、複数の領域にまたがる幅広い応用のために、機械学習において最重要課題である。
密度比を推定するパラメトリック法は、モデルが不特定であれば偏りが生じる可能性があるが、従来の非パラメトリック法は、データ次元が大きければ次元の呪いに悩まされる。
本稿では,これらの課題に対処するため,投影探索(PP)近似に基づく新しいDRE手法を提案する。
提案手法は,DREの精度向上に必要なモデルの柔軟性を維持しつつ,高次元の影響を軽減するためにPPを利用する。
提案した推定器の整合性と収束率を確立する。
実験の結果,提案手法は様々なアプリケーションにおいて既存手法よりも優れていることがわかった。
関連論文リスト
- A variational Bayes approach to debiased inference for low-dimensional parameters in high-dimensional linear regression [2.7498981662768536]
疎線形回帰における統計的推測のためのスケーラブルな変分ベイズ法を提案する。
我々のアプローチは、平均場近似をニュアンス座標に割り当てることに依存している。
これは前処理のステップに過ぎず、平均場変動ベイズの計算上の優位性を保っている。
論文 参考訳(メタデータ) (2024-06-18T14:27:44Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - Variational Bayesian surrogate modelling with application to robust design optimisation [0.9626666671366836]
サロゲートモデルは複雑な計算モデルに対して素早く評価できる近似を提供する。
入力の不確かさと次元減少を伴う統計的代理を構築するためのベイズ推定について考察する。
コスト関数がモデル出力の平均および標準偏差の重み付け和に依存するような本質的で頑健な構造最適化問題を示す。
論文 参考訳(メタデータ) (2024-04-23T09:22:35Z) - Partially factorized variational inference for high-dimensional mixed models [0.0]
変分推論は、特にベイズ的文脈において、そのような計算を行う一般的な方法である。
標準平均場変動推論は,高次元の後方不確かさを劇的に過小評価することを示した。
次に、平均場仮定を適切に緩和すると、不確実な定量化が高次元で悪化しない手法が導かれることを示す。
論文 参考訳(メタデータ) (2023-12-20T16:12:37Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood [10.35315334180936]
この問題に対する新しいアプローチを提案する: 近似的類似度(LIDL)を用いた局所固有次元推定
本手法は, 任意の密度推定法をサブルーチンとして用い, 次元の挑戦をサイドステップしようと試みる。
LIDLは,この問題の標準ベンチマークで競合する結果を得るとともに,数千次元まで拡張可能であることを示す。
論文 参考訳(メタデータ) (2022-06-29T19:47:46Z) - Wasserstein Distributionally Robust Estimation in High Dimensions: Performance Analysis and Optimal Hyperparameter Tuning [2.4578723416255754]
分散ロバスト最適化(DRO)は不確実性の下での見積もりの強力なフレームワークとなっている。
本稿では,DROに基づく線形回帰法を提案し,その中心的問題,すなわちロバストネス半径を最適に選択する方法を提案する。
本手法はクロスバリデーションと同じ効果を示すが,計算コストのごく一部で実現可能であることを示す。
論文 参考訳(メタデータ) (2022-06-27T13:02:59Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。