ECP-Mamba: An Efficient Multi-scale Self-supervised Contrastive Learning Method with State Space Model for PolSAR Image Classification
- URL: http://arxiv.org/abs/2506.01040v1
- Date: Sun, 01 Jun 2025 14:52:54 GMT
- Title: ECP-Mamba: An Efficient Multi-scale Self-supervised Contrastive Learning Method with State Space Model for PolSAR Image Classification
- Authors: Zuzheng Kuang, Haixia Bi, Chen Xu, Jian Sun,
- Abstract summary: This paper presents ECP-Mamba, an efficient framework integrating multi-scale self-supervised contrastive learning with a state space model (SSM) backbone.<n>On the Flevoland 1989 dataset, ECP-Mamba achieves state-of-the-art performance with an overall accuracy of 99.70%, average accuracy of 99.64% and Kappa coefficient of 99.62e-2.
- Score: 42.02105017671516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, polarimetric synthetic aperture radar (PolSAR) image classification has been greatly promoted by deep neural networks. However,current deep learning-based PolSAR classification methods encounter difficulties due to its dependence on extensive labeled data and the computational inefficiency of architectures like Transformers. This paper presents ECP-Mamba, an efficient framework integrating multi-scale self-supervised contrastive learning with a state space model (SSM) backbone. Specifically, ECP-Mamba addresses annotation scarcity through a multi-scale predictive pretext task based on local-to-global feature correspondences, which uses a simplified self-distillation paradigm without negative sample pairs. To enhance computational efficiency,the Mamba architecture (a selective SSM) is first tailored for pixel-wise PolSAR classification task by designing a spiral scan strategy. This strategy prioritizes causally relevant features near the central pixel, leveraging the localized nature of pixel-wise classification tasks. Additionally, the lightweight Cross Mamba module is proposed to facilitates complementary multi-scale feature interaction with minimal overhead. Extensive experiments across four benchmark datasets demonstrate ECP-Mamba's effectiveness in balancing high accuracy with resource efficiency. On the Flevoland 1989 dataset, ECP-Mamba achieves state-of-the-art performance with an overall accuracy of 99.70%, average accuracy of 99.64% and Kappa coefficient of 99.62e-2. Our code will be available at https://github.com/HaixiaBi1982/ECP_Mamba.
Related papers
- AHDMIL: Asymmetric Hierarchical Distillation Multi-Instance Learning for Fast and Accurate Whole-Slide Image Classification [51.525891360380285]
AHDMIL is an Asymmetric Hierarchical Distillation Multi-Instance Learning framework.<n>It eliminates irrelevant patches through a two-step training process.<n>It consistently outperforms previous state-of-the-art methods in both classification performance and inference speed.
arXiv Detail & Related papers (2025-08-07T07:47:16Z) - RD-UIE: Relation-Driven State Space Modeling for Underwater Image Enhancement [59.364418120895]
Underwater image enhancement (UIE) is a critical preprocessing step for marine vision applications.<n>We develop a novel relation-driven Mamba framework for effective UIE (RD-UIE)<n>Experiments on underwater enhancement benchmarks demonstrate RD-UIE outperforms the state-of-the-art approach WMamba.
arXiv Detail & Related papers (2025-05-02T12:21:44Z) - From Pixels to Gigapixels: Bridging Local Inductive Bias and Long-Range Dependencies with Pixel-Mamba [16.19372261506739]
We introduce Pixel-Mamba, a novel deep learning architecture designed to efficiently handle gigapixel WSIs.<n> Pixel-Mamba incorporates local inductive biases through progressively expanding tokens, akin to convolutional neural networks.<n>Experiments demonstrate the efficacy of Pixel-Mamba as a powerful and efficient framework for end-to-end WSI analysis.
arXiv Detail & Related papers (2024-12-21T17:45:27Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
Recent deep neural networks (DNNs) have made impressive progress in performance by introducing learned data priors.
We propose a novel method of Learning Resampling (termed LeRF) which takes advantage of both the structural priors learned by DNNs and the locally continuous assumption.
LeRF assigns spatially varying resampling functions to input image pixels and learns to predict the shapes of these resampling functions with a neural network.
arXiv Detail & Related papers (2024-07-13T16:09:45Z) - CATSNet: a context-aware network for Height Estimation in a Forested Area based on Pol-TomoSAR data [4.9793121278328]
This work defines a context-aware deep learning-based solution named CATSNet.
A convolutional neural network is considered to leverage patch-based information and extract features from a neighborhood rather than focus on a single pixel.
The experimental results show striking advantages in both performance and ability by leveraging context information within Multiple Baselines (MB) TomoSAR data across different polarimetric modalities, surpassing existing techniques.
arXiv Detail & Related papers (2024-03-29T16:27:40Z) - MiM-ISTD: Mamba-in-Mamba for Efficient Infrared Small Target Detection [72.46396769642787]
We develop a nested structure, Mamba-in-Mamba (MiM-ISTD), for efficient infrared small target detection.
MiM-ISTD is $8 times$ faster than the SOTA method and reduces GPU memory usage by 62.2$%$ when testing on $2048 times 2048$ images.
arXiv Detail & Related papers (2024-03-04T15:57:29Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Efficient Context Integration through Factorized Pyramidal Learning for
Ultra-Lightweight Semantic Segmentation [1.0499611180329804]
We propose a novel Factorized Pyramidal Learning (FPL) module to aggregate rich contextual information in an efficient manner.
We decompose the spatial pyramid into two stages which enables a simple and efficient feature fusion within the module to solve the notorious checkerboard effect.
Based on the FPL module and FIR unit, we propose an ultra-lightweight real-time network, called FPLNet, which achieves state-of-the-art accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-02-23T05:34:51Z) - Classification of Polarimetric SAR Images Using Compact Convolutional
Neural Networks [24.553598498985796]
A novel and systematic classification framework is proposed for the classification of PolSAR images.
It is based on a compact and adaptive implementation of CNNs using a sliding-window classification approach.
The proposed approach can perform classification using smaller window sizes than deep CNNs.
arXiv Detail & Related papers (2020-11-10T17:09:11Z) - Hybrid Multiple Attention Network for Semantic Segmentation in Aerial
Images [24.35779077001839]
We propose a novel attention-based framework named Hybrid Multiple Attention Network (HMANet) to adaptively capture global correlations.
We introduce a simple yet effective region shuffle attention (RSA) module to reduce feature redundant and improve the efficiency of self-attention mechanism.
arXiv Detail & Related papers (2020-01-09T07:47:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.