論文の概要: On the Stability of Graph Convolutional Neural Networks: A Probabilistic Perspective
- arxiv url: http://arxiv.org/abs/2506.01213v2
- Date: Tue, 03 Jun 2025 17:15:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:09.265953
- Title: On the Stability of Graph Convolutional Neural Networks: A Probabilistic Perspective
- Title(参考訳): グラフ畳み込みニューラルネットワークの安定性について:確率論的視点
- Authors: Ning Zhang, Henry Kenlay, Li Zhang, Mihai Cucuringu, Xiaowen Dong,
- Abstract要約: グラフトポロジにおける摂動がGCNN出力に与える影響について検討し,モデル安定性解析のための新しい定式化を提案する。
最悪の場合の摂動のみに焦点を当てた従来の研究とは異なり、分布認識の定式化は幅広い入力データにまたがる出力摂動を特徴付ける。
- 参考スコア(独自算出の注目度): 24.98112303106984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional neural networks (GCNNs) have emerged as powerful tools for analyzing graph-structured data, achieving remarkable success across diverse applications. However, the theoretical understanding of the stability of these models, i.e., their sensitivity to small changes in the graph structure, remains in rather limited settings, hampering the development and deployment of robust and trustworthy models in practice. To fill this gap, we study how perturbations in the graph topology affect GCNN outputs and propose a novel formulation for analyzing model stability. Unlike prior studies that focus only on worst-case perturbations, our distribution-aware formulation characterizes output perturbations across a broad range of input data. This way, our framework enables, for the first time, a probabilistic perspective on the interplay between the statistical properties of the node data and perturbations in the graph topology. We conduct extensive experiments to validate our theoretical findings and demonstrate their benefits over existing baselines, in terms of both representation stability and adversarial attacks on downstream tasks. Our results demonstrate the practical significance of the proposed formulation and highlight the importance of incorporating data distribution into stability analysis.
- Abstract(参考訳): グラフ畳み込みニューラルネットワーク(GCNN)は、グラフ構造化データを分析する強力なツールとして登場し、多様なアプリケーションで顕著な成功を収めている。
しかし、これらのモデルの安定性、すなわちグラフ構造の小さな変化に対する感度に関する理論的理解は、実際には堅牢で信頼性の高いモデルの開発と展開を妨げるため、比較的限られた設定のままである。
このギャップを埋めるために、グラフトポロジの摂動がGCNN出力に与える影響について検討し、モデル安定性を解析するための新しい定式化を提案する。
最悪の場合の摂動のみに焦点を当てた従来の研究とは異なり、分布認識の定式化は幅広い入力データにまたがる出力摂動を特徴付ける。
このようにして、我々のフレームワークは、ノードデータの統計特性とグラフトポロジの摂動との間の相互作用に関する確率論的視点を初めて得ることができる。
我々は,我々の理論的知見を検証し,下流タスクに対する表現安定性と敵攻撃の両方の観点から,既存のベースラインに対するメリットを実証する広範囲な実験を行った。
本研究は, 提案する定式化の実用的意義を実証し, 安定性解析にデータ分布を組み込むことの重要性を強調した。
関連論文リスト
- Hierarchical Uncertainty-Aware Graph Neural Network [3.4498722449655066]
この研究は、階層的不確実性認識グラフニューラルネットワーク(HU-GNN)という新しいアーキテクチャを導入している。
マルチスケールな表現学習、原則的不確実性推定、および単一エンドツーエンドフレームワークにおける自己監督型埋め込み多様性を統一する。
具体的には、HU-GNNはノードクラスタを適応的に形成し、個々のノードからより高いレベルまでの複数の構造スケールで不確実性を推定する。
論文 参考訳(メタデータ) (2025-04-28T14:22:18Z) - On the Relationship Between Robustness and Expressivity of Graph Neural Networks [7.161966906570077]
グラフニューラルネットワーク(GNN)はビットフリップ攻撃(BFA)に対して脆弱である
建築的特徴, グラフ特性, 相互作用の影響を研究するための分析フレームワークを提案する。
我々は、データセット上でGNN表現性を劣化させるために必要なビットフリップ数に関する理論的境界を導出する。
論文 参考訳(メタデータ) (2025-04-18T16:38:33Z) - Conformal Prediction for Federated Graph Neural Networks with Missing Neighbor Information [2.404163279345609]
本研究は,連合グラフ学習へのコンフォーマル予測の適用性を拡張した。
分散サブグラフにおけるリンク不足問題に対処し、CPセットサイズに対する悪影響を最小限に抑える。
本稿では,欠落したデータに対する負の影響を軽減するために,変分オートエンコーダに基づく近隣住民の再構築手法を提案する。
論文 参考訳(メタデータ) (2024-10-17T20:22:25Z) - Uncertainty in Graph Neural Networks: A Survey [47.785948021510535]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Probabilistically Rewired Message-Passing Neural Networks [41.554499944141654]
メッセージパッシンググラフニューラルネットワーク(MPNN)は、グラフ構造化入力を処理する強力なツールとして登場した。
MPNNは、潜在的なノイズや欠落した情報を無視して、固定された入力グラフ構造で動作する。
確率的に再構成されたMPNN(PR-MPNN)を考案し、より有益なものを省略しながら、関連するエッジを追加することを学習する。
論文 参考訳(メタデータ) (2023-10-03T15:43:59Z) - coVariance Neural Networks [119.45320143101381]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ内の相互関係を利用して学習する効果的なフレームワークである。
我々は、サンプル共分散行列をグラフとして扱う、共分散ニューラルネットワーク(VNN)と呼ばれるGNNアーキテクチャを提案する。
VNN の性能は PCA ベースの統計手法よりも安定していることを示す。
論文 参考訳(メタデータ) (2022-05-31T15:04:43Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Training Stable Graph Neural Networks Through Constrained Learning [116.03137405192356]
グラフニューラルネットワーク(GNN)は、ネットワークデータから機能を学ぶためにグラフ畳み込みに依存する。
GNNは、グラフフィルタから受け継いだ特性である、基礎となるグラフの様々な種類の摂動に対して安定である。
本稿では,GNNの安定条件に制約を課すことにより,新たな制約付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-10-07T15:54:42Z) - Stability of Graph Convolutional Neural Networks to Stochastic
Perturbations [122.12962842842349]
グラフ畳み込みニューラルネットワーク(GCNN)は、ネットワークデータから表現を学ぶ非線形処理ツールである。
現在の分析では決定論的摂動を考慮しているが、トポロジカルな変化がランダムである場合、関連する洞察を与えられない。
本稿では,リンク損失に起因する乱れグラフ摂動に対するGCNNの安定性について検討する。
論文 参考訳(メタデータ) (2021-06-19T16:25:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。