Intrinsic Hamiltonian of Mean Force and Strong-Coupling Quantum Thermodynamics
- URL: http://arxiv.org/abs/2506.02888v1
- Date: Tue, 03 Jun 2025 13:54:07 GMT
- Title: Intrinsic Hamiltonian of Mean Force and Strong-Coupling Quantum Thermodynamics
- Authors: Ignacio González, Sagnik Chakraborty, Ángel Rivas,
- Abstract summary: We present a universal thermodynamic framework for quantum systems strongly coupled to thermal environments.<n>We preserve the same gauge freedoms as in the standard weak-coupling regime and retain the von Neumann expression for thermodynamic entropy.<n>We validate the framework by applying it to a paradigmatic model of strong coupling with a structured bosonic reservoir.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a universal thermodynamic framework for quantum systems that may be strongly coupled to thermal environments. Unlike previous approaches, our method enables a clear definition of thermostatic properties while preserving the same gauge freedoms as in the standard weak-coupling regime and retaining the von Neumann expression for thermodynamic entropy. Furthermore, it provides a formulation of general first and second laws using only variables accessible through microscopic control of the system, thereby enhancing experimental feasibility. We validate the framework by applying it to a paradigmatic model of strong coupling with a structured bosonic reservoir.
Related papers
- Heat operator approach to quantum stochastic thermodynamics in the strong-coupling regime [0.0]
We identify a 'heat operator,' whose moments with respect to the vacuum state correspond to the moments of the heat exchanged with a thermal bath.<n>This recasts the statistics of heat statistics as a standard unitary time-evolution problem.<n>We exploit the chain mapping of thermodynamic reservoirs to compute heat fluctuations in the Ohmic spin-boson model.
arXiv Detail & Related papers (2025-04-14T18:26:45Z) - Ergotropy-Based Quantum Thermodynamics [0.0]
We introduce an ergotropy-based formulation of quantum thermodynamics, which provides a strong connection between average heat and von Neumann entropy.<n>As an application, the average heat can be used as a general non-Markovinity measure for unital maps.
arXiv Detail & Related papers (2025-04-09T18:26:51Z) - Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
Environments in quantum thermodynamics usually take the role of heat baths.
We show that within the same model, the environment can take three different thermodynamic roles.
The exact role of the environment is determined by the strength and structure of the coupling.
arXiv Detail & Related papers (2024-08-01T15:39:06Z) - Quantum Thermodynamic Integrability for Canonical and non-Canonical Statistics [0.0]
We extend the Carath'eodory principle of the Second Law to quantum thermodynamics with energy levels depending on macroscopic variables.
This extension introduces the concept of Quantum Thermodynamic Integrability (QTI), offering an alternative foundation for statistical mechanics.
arXiv Detail & Related papers (2024-07-11T09:50:39Z) - Stochastic Thermodynamics at the Quantum-Classical Boundary: A Self-Consistent Framework Based on Adiabatic-Response Theory [0.0]
Microscopic thermal machines promise to play an important role in future quantum technologies.
Making such devices widely applicable will require effective strategies to channel their output into easily accessible storage systems like classical degrees of freedom.
We develop a self-consistent theoretical framework that makes it possible to model such quantum-classical hybrid devices in a thermodynamically consistent manner.
arXiv Detail & Related papers (2024-04-15T20:13:42Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Open system dynamics from thermodynamic compatibility [0.0]
In particular, strict energy conservation between the system and environment implies that the dissipative dynamical map commutes with the unitary system propagator.
We use spectral analysis to prove the general form of the ensuing master equation.
The obtained formal structure can be employed to test the compatibility of approximate derivations with thermodynamics.
arXiv Detail & Related papers (2020-11-06T18:23:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.