Adaptive Graph Pruning for Multi-Agent Communication
- URL: http://arxiv.org/abs/2506.02951v3
- Date: Wed, 23 Jul 2025 03:40:09 GMT
- Title: Adaptive Graph Pruning for Multi-Agent Communication
- Authors: Boyi Li, Zhonghan Zhao, Der-Horng Lee, Gaoang Wang,
- Abstract summary: Large Language Model (LLM) based multi-agent systems have shown remarkable performance in various tasks.<n>We propose Adaptive Graph Pruning (AGP), a novel task-adaptive multi-agent collaboration framework.
- Score: 14.18447472314079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Model (LLM) based multi-agent systems have shown remarkable performance in various tasks, especially when enhanced through collaborative communication. However, current methods often rely on a fixed number of agents and static communication structures, limiting their ability to adapt to varying task complexities. In this paper, we propose Adaptive Graph Pruning (AGP), a novel task-adaptive multi-agent collaboration framework that jointly optimizes agent quantity (hard-pruning) and communication topology (soft-pruning). Specifically, our method employs a two-stage training strategy: firstly, independently training soft-pruning networks for different agent quantities to determine optimal agent-quantity-specific complete graphs and positional masks across specific tasks; and then jointly optimizing hard-pruning and soft-pruning within a maximum complete graph to dynamically configure the number of agents and their communication topologies per task. Extensive experiments demonstrate that our approach is: (1) High-performing, achieving state-of-the-art results across six benchmarks and consistently generalizes across multiple mainstream LLM architectures, with a increase in performance of $2.58\%\sim 9.84\%$; (2) Task-adaptive, dynamically constructing optimized communication topologies tailored to specific tasks, with an extremely high performance in all three task categories (general reasoning, mathematical reasoning, and code generation); (3) Token-economical, having fewer training steps and token consumption at the same time, with a decrease in token consumption of $90\%+$; and (4) Training-efficient, achieving high performance with very few training steps compared with other methods. The performance will surpass the existing baselines after about ten steps of training under six benchmarks.
Related papers
- AnyMAC: Cascading Flexible Multi-Agent Collaboration via Next-Agent Prediction [70.60422261117816]
We propose a new framework that rethinks multi-agent coordination through a sequential structure rather than a graph structure.<n>Our method focuses on two key directions: (1) Next-Agent Prediction, which selects the most suitable agent role at each step, and (2) Next-Context Selection, which enables each agent to selectively access relevant information from any previous step.
arXiv Detail & Related papers (2025-06-21T18:34:43Z) - AgentGroupChat-V2: Divide-and-Conquer Is What LLM-Based Multi-Agent System Need [35.88121318813734]
Large language model based multi-agent systems have demonstrated significant potential in social simulation and complex task resolution domains.<n>We introduce AgentGroupChat-V2, a novel framework addressing these challenges through three core innovations.<n>Experiments demonstrate AgentGroupChat-V2's superior performance across diverse domains.
arXiv Detail & Related papers (2025-06-18T13:24:04Z) - Two Heads are Better Than One: Test-time Scaling of Multi-agent Collaborative Reasoning [29.580108004844856]
Multi-agent systems (MAS) built on large language models (LLMs) offer a promising path toward solving complex, real-world tasks.<n>Recent advancements in test-time scaling (TTS) have significantly improved single-agent performance on challenging reasoning tasks.<n>We introduce an adaptive multi-agent framework designed to enhance collaborative reasoning through both model-level training and system-level coordination.
arXiv Detail & Related papers (2025-04-14T00:27:45Z) - Graph Based Deep Reinforcement Learning Aided by Transformers for Multi-Agent Cooperation [2.8169258551959544]
We propose a novel framework that integrates Graph Neural Networks (GNNs), Deep Reinforcement Learning (DRL), and transformer-based mechanisms for enhanced multi-agent coordination and collective task execution.<n>Our approach leverages GNNs to model agent-agent and agent-goal interactions through adaptive graph construction, enabling efficient information aggregation and decision-making under constrained communication.
arXiv Detail & Related papers (2025-04-11T01:46:18Z) - MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents.<n>Existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition.<n>We introduce MultiAgentBench, a benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios.
arXiv Detail & Related papers (2025-03-03T05:18:50Z) - Optimal Task Order for Continual Learning of Multiple Tasks [3.591122855617648]
Continual learning of multiple tasks remains a major challenge for neural networks.<n>Here, we investigate how task order influences continual learning and propose a strategy for optimizing it.<n>Our work thus presents a generalizable framework for task-order optimization in task-incremental continual learning.
arXiv Detail & Related papers (2025-02-05T16:43:58Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks [36.98849144472012]
We introduce G-Designer, an adaptive, efficient, and robust solution for multi-agent deployment.<n>G-Designer dynamically designs task-aware, customized communication topologies.
arXiv Detail & Related papers (2024-10-15T17:01:21Z) - Giving each task what it needs -- leveraging structured sparsity for tailored multi-task learning [4.462334751640166]
In the Multi-task Learning (MTL) framework, every task demands distinct feature representations, ranging from low-level to high-level attributes.
This work introduces Layer-d Multi-Task models that utilize structured sparsity to refine feature selection for individual tasks and enhance the performance of all tasks in a multi-task scenario.
arXiv Detail & Related papers (2024-06-05T08:23:38Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
We propose automatically selecting a team of agents from candidates to collaborate in a dynamic communication structure toward different tasks and domains.
Specifically, we build a framework named Dynamic LLM-Powered Agent Network ($textDyLAN$) for LLM-powered agent collaboration.
We demonstrate that DyLAN outperforms strong baselines in code generation, decision-making, general reasoning, and arithmetic reasoning tasks with moderate computational cost.
arXiv Detail & Related papers (2023-10-03T16:05:48Z) - Controllable Dynamic Multi-Task Architectures [92.74372912009127]
We propose a controllable multi-task network that dynamically adjusts its architecture and weights to match the desired task preference as well as the resource constraints.
We propose a disentangled training of two hypernetworks, by exploiting task affinity and a novel branching regularized loss, to take input preferences and accordingly predict tree-structured models with adapted weights.
arXiv Detail & Related papers (2022-03-28T17:56:40Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
Population-based multi-agent reinforcement learning (PB-MARL) refers to the series of methods nested with reinforcement learning (RL) algorithms.
We present MALib, a scalable and efficient computing framework for PB-MARL.
arXiv Detail & Related papers (2021-06-05T03:27:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.