論文の概要: FPGA-Enabled Machine Learning Applications in Earth Observation: A Systematic Review
- arxiv url: http://arxiv.org/abs/2506.03938v1
- Date: Wed, 04 Jun 2025 13:30:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 21:20:14.352304
- Title: FPGA-Enabled Machine Learning Applications in Earth Observation: A Systematic Review
- Title(参考訳): 地球観測におけるFPGA-Enabled Machine Learningアプリケーション:システムレビュー
- Authors: Cédric Léonard, Dirk Stober, Martin Schulz,
- Abstract要約: FPGAは、ミッション固有の要求への適応性とパフォーマンスのバランスをとり、オンボードでのデプロイメントを可能にする。
本稿では,遠隔センシングアプリケーションのためのFPGA上に機械学習モデルをデプロイする66の実験を系統的に分析する。
- 参考スコア(独自算出の注目度): 1.1762674777779538
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: New UAV technologies and the NewSpace era are transforming Earth Observation missions and data acquisition. Numerous small platforms generate large data volume, straining bandwidth and requiring onboard decision-making to transmit high-quality information in time. While Machine Learning allows real-time autonomous processing, FPGAs balance performance with adaptability to mission-specific requirements, enabling onboard deployment. This review systematically analyzes 66 experiments deploying ML models on FPGAs for Remote Sensing applications. We introduce two distinct taxonomies to capture both efficient model architectures and FPGA implementation strategies. For transparency and reproducibility, we follow PRISMA 2020 guidelines and share all data and code at https://github.com/CedricLeon/Survey_RS-ML-FPGA.
- Abstract(参考訳): 新しいUAV技術とNewSpaceの時代は、地球観測ミッションとデータ取得を変えつつある。
多数の小さなプラットフォームが大量のデータボリュームを生成し、帯域幅を緊張させ、高品質な情報を時間内に送信するために意思決定を必要とする。
機械学習はリアルタイムの自律処理を可能にするが、FPGAはミッション固有の要件への適応性とパフォーマンスのバランスを取り、オンボード展開を可能にする。
本稿では,遠隔センシングアプリケーションのためのFPGA上でMLモデルをデプロイする66の実験を系統的に分析する。
効率的なモデルアーキテクチャとFPGA実装戦略の両方を捉えるために、2つの異なる分類法を導入する。
透明性と再現性については、PRISMA 2020ガイドラインに従って、すべてのデータとコードをhttps://github.com/CedricLeon/Survey_RS-ML-FPGAで共有します。
関連論文リスト
- Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control [97.98560001760126]
複数の空間制御入力に基づいて世界シミュレーションを生成する条件付き世界生成モデルであるCosmos-Transferを導入する。
提案したモデルを解析し,ロボット2Realや自律走行車データ豊かさを含む物理AIへの応用を実証するために評価を行う。
論文 参考訳(メタデータ) (2025-03-18T17:57:54Z) - Investigating Resource-efficient Neutron/Gamma Classification ML Models Targeting eFPGAs [0.0]
オープンソース組み込みFPGA(eFPGA)フレームワークは、ハードウェアに機械学習モデルを実装するための、代替的で柔軟な経路を提供する。
完全連結ニューラルネットワーク(fcNN)と強化決定木(BDT)モデルのeFPGA実装のパラメータ空間について検討する。
この研究結果は、テストチップの一部として統合されるeFPGAファブリックの仕様策定を支援するために使用される。
論文 参考訳(メタデータ) (2024-04-19T20:03:30Z) - Understanding the Potential of FPGA-Based Spatial Acceleration for Large Language Model Inference [11.614722231006695]
数十億のパラメータを誇った大規模言語モデル(LLM)は、推論ワークロードの効率的なデプロイに対する大きな需要を生み出している。
本稿では,FPGA上でのLLM推論におけるモデル固有空間加速度の実現可能性と可能性について検討する。
論文 参考訳(メタデータ) (2023-12-23T04:27:06Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
機械学習は、大規模または高速に生成されたデータセットを含む研究を強化するために使用できる。
本研究では,X線反射法(XRR)のための閉ループワークフローへのMLの導入について述べる。
本研究では,ビームライン制御ソフトウェア環境に付加的なソフトウェア依存関係を導入することなく,実験中の基本データ解析をリアルタイムで行うソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-20T21:21:19Z) - LEAPER: Modeling Cloud FPGA-based Systems via Transfer Learning [13.565689665335697]
LEAPERは,既存のMLベースモデルを未知の環境に適応させるFPGAベースのシステムに対して,トランスファーラーニングに基づくアプローチを提案する。
その結果,5ショットの学習を行うクラウド環境において,移動モデルを用いて予測を行う場合,平均85%の精度が得られた。
論文 参考訳(メタデータ) (2022-08-22T21:25:56Z) - Weighted Ensembles for Active Learning with Adaptivity [60.84896785303314]
本稿では,ラベル付きデータに漸進的に適応した重み付きGPモデルのアンサンブルについて述べる。
この新しいEGPモデルに基づいて、不確実性および不一致ルールに基づいて、一連の取得関数が出現する。
適応的に重み付けされたEGPベースの取得関数のアンサンブルも、さらなる性能向上のために導入されている。
論文 参考訳(メタデータ) (2022-06-10T11:48:49Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Taurus: A Data Plane Architecture for Per-Packet ML [59.1343317736213]
本稿では,線数推論のためのデータプレーンであるTaurusの設計と実装について述べる。
Taurus スイッチ ASIC の評価は,Taurus がサーバベースコントロールプレーンよりも桁違いに高速に動作することを示す。
論文 参考訳(メタデータ) (2020-02-12T09:18:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。