論文の概要: Orthogonal Gradient Descent Improves Neural Calibration
- arxiv url: http://arxiv.org/abs/2506.04487v1
- Date: Wed, 04 Jun 2025 22:12:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.44602
- Title: Orthogonal Gradient Descent Improves Neural Calibration
- Title(参考訳): 直交グラディエントDescentは神経の校正を改善する
- Authors: C. Evans Hedges,
- Abstract要約: 10%のラベル付きデータを持つCIFAR-10では、$perp$Gradは精度でSGDと一致するが、キャリブレーションの指標は一貫して改善されている。
これらの利点は、入力破損(CIFAR-10C)と拡張トレーニングの下で継続され、$perp$GradモデルはSGDで訓練されたモデルよりも優雅に分解される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide evidence that orthogonalizing gradients during training improves model calibration without sacrificing accuracy. On CIFAR-10 with 10% labeled data, $\perp$Grad matches SGD in accuracy but yields consistently improved calibration metrics such as lower test loss, reduced softmax overconfidence, and higher predictive entropy. These benefits persist under input corruption (CIFAR-10C) and extended training, where $\perp$Grad models degrade more gracefully than SGD-trained counterparts. $\perp$Grad is optimizer-agnostic, incurs minimal overhead, and works well with post-hoc calibration techniques like temperature scaling. Theoretically, we prove convergence of a simplified version of $\perp$Grad under mild assumptions and characterize its stationary points in positive homogeneous networks: $\perp$Grad converges to solutions where further loss reduction requires confidence scaling rather than decision boundary improvement.
- Abstract(参考訳): トレーニング中の直交勾配が精度を犠牲にすることなくモデル校正を改善することを示す。
10%のラベル付きデータを持つCIFAR-10では、$\perp$Gradは精度でSGDと一致するが、テスト損失の低減、ソフトマックス過信率の低減、予測エントロピーの向上といったキャリブレーションの指標を一貫して改善する。
これらの利点は入力汚職(CIFAR-10C)と拡張トレーニングの下で継続され、$\perp$GradモデルはSGDで訓練されたモデルよりも優雅に分解される。
$\perp$Gradはオプティマイザに依存しず、最小限のオーバーヘッドを発生させ、温度スケーリングのようなポストホックキャリブレーション技術とうまく連携する。
理論的には、穏やかな仮定の下で$\perp$Gradの簡易バージョンが収束することを証明し、正の同次ネットワークにおける定常点を特徴付ける:$\perp$Gradは、さらなる損失低減が決定境界改善よりも信頼性スケーリングを必要とする解に収束する。
関連論文リスト
- Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
重み付き雑音下でのグラディエントDescence(SGD)の収束を確実にする上での勾配正規化とクリッピングの役割について検討する。
我々の研究は、重尾雑音下でのSGDの勾配正規化の利点を示す最初の理論的証拠を提供する。
我々は、勾配正規化とクリッピングを取り入れた加速SGD変種を導入し、さらに重み付き雑音下での収束率を高めた。
論文 参考訳(メタデータ) (2024-10-21T22:40:42Z) - Feature Clipping for Uncertainty Calibration [24.465567005078135]
現代のディープニューラルネットワーク(DNN)は、しばしば過剰な自信に悩まされ、誤校正につながる。
この問題に対処するために,特徴クリッピング(FC)と呼ばれるポストホックキャリブレーション手法を提案する。
FCは特定の閾値に特徴値をクリップし、高い校正誤差サンプルのエントロピーを効果的に増加させる。
論文 参考訳(メタデータ) (2024-10-16T06:44:35Z) - Orthogonal Causal Calibration [55.28164682911196]
我々は、因果校正作業を標準(非因果予測モデル)の校正作業に還元する一般的なアルゴリズムを開発する。
以上の結果から,既存のキャリブレーションアルゴリズムを因果的設定に応用できることが示唆された。
論文 参考訳(メタデータ) (2024-06-04T03:35:25Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - AdaFocal: Calibration-aware Adaptive Focal Loss [8.998525155518836]
焦点損失のあるトレーニングは、クロスエントロピーよりもキャリブレーションが優れている。
AdaFocal と呼ばれる適応型焦点損失を校正する手法を提案する。
論文 参考訳(メタデータ) (2022-11-21T20:19:24Z) - A Closer Look at the Calibration of Differentially Private Learners [33.715727551832785]
差分プライベート降下勾配(DP-SGD)を訓練した分類器の校正について検討する。
本分析では,DP-SGDの勾配クリッピングを誤校正の原因として同定した。
温度スケーリングやプラットスケーリングといった後処理キャリブレーション手法の個人差が驚くほど有効であることを示す。
論文 参考訳(メタデータ) (2022-10-15T10:16:18Z) - Sample-dependent Adaptive Temperature Scaling for Improved Calibration [95.7477042886242]
ニューラルネットワークの誤りを補うポストホックアプローチは、温度スケーリングを実行することだ。
入力毎に異なる温度値を予測し、信頼度と精度のミスマッチを調整することを提案する。
CIFAR10/100およびTiny-ImageNetデータセットを用いて,ResNet50およびWideResNet28-10アーキテクチャ上で本手法をテストする。
論文 参考訳(メタデータ) (2022-07-13T14:13:49Z) - When are Iterative Gaussian Processes Reliably Accurate? [38.523693700243975]
ランツォス分解は高度に正確な点予測を伴うスケーラブルなガウス過程推論を達成している。
CG耐性,プレコンディショナーランク,およびLaczos分解ランクについて検討した。
本稿では,LGS-BFB が反復型 GP にとって魅力的であり,より少ない更新で収束を達成することを示す。
論文 参考訳(メタデータ) (2021-12-31T00:02:18Z) - Parameterized Temperature Scaling for Boosting the Expressive Power in
Post-Hoc Uncertainty Calibration [57.568461777747515]
我々は新しいキャリブレーション手法であるパラメタライズド温度スケーリング(PTS)を導入する。
最新のポストホックキャリブレータの精度保持性能は、その本質的な表現力によって制限されることを実証します。
当社の新しい精度保存手法が,多数のモデルアーキテクチャやデータセット,メトリクスにおいて,既存のアルゴリズムを一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2021-02-24T10:18:30Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。