論文の概要: NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
- arxiv url: http://arxiv.org/abs/2506.04536v3
- Date: Mon, 27 Oct 2025 22:48:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 17:50:20.075403
- Title: NOBLE -- Neural Operator with Biologically-informed Latent Embeddings to Capture Experimental Variability in Biological Neuron Models
- Title(参考訳): NOBLE -- 生物学的にインフォームドされた潜伏埋め込みを用いたニューラルオペレーター : 生体ニューロンモデルにおける実験的変動の捉え方
- Authors: Luca Ghafourpour, Valentin Duruisseaux, Bahareh Tolooshams, Philip H. Wong, Costas A. Anastassiou, Anima Anandkumar,
- Abstract要約: NOBLEは、解釈可能なニューロンの特徴を連続周波数変調した埋め込みから電流注入によって誘導されるソマティック電圧応答へのマッピングを学ぶ神経オペレーターフレームワークである。
内在的な実験変数を考慮したニューラルダイナミクスの分布を予測する。
NOBLEは、その一般化を実際の実験データで検証する最初の大規模ディープラーニングフレームワークである。
- 参考スコア(独自算出の注目度): 63.592664795493725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Characterizing the cellular properties of neurons is fundamental to understanding their function in the brain. In this quest, the generation of bio-realistic models is central towards integrating multimodal cellular data sets and establishing causal relationships. However, current modeling approaches remain constrained by the limited availability and intrinsic variability of experimental neuronal data. The deterministic formalism of bio-realistic models currently precludes accounting for the natural variability observed experimentally. While deep learning is becoming increasingly relevant in this space, it fails to capture the full biophysical complexity of neurons, their nonlinear voltage dynamics, and variability. To address these shortcomings, we introduce NOBLE, a neural operator framework that learns a mapping from a continuous frequency-modulated embedding of interpretable neuron features to the somatic voltage response induced by current injection. Trained on synthetic data generated from bio-realistic neuron models, NOBLE predicts distributions of neural dynamics accounting for the intrinsic experimental variability. Unlike conventional bio-realistic neuron models, interpolating within the embedding space offers models whose dynamics are consistent with experimentally observed responses. NOBLE enables the efficient generation of synthetic neurons that closely resemble experimental data and exhibit trial-to-trial variability, offering a $4200\times$ speedup over the numerical solver. NOBLE is the first scaled-up deep learning framework that validates its generalization with real experimental data. To this end, NOBLE captures fundamental neural properties in a unique and emergent manner that opens the door to a better understanding of cellular composition and computations, neuromorphic architectures, large-scale brain circuits, and general neuroAI applications.
- Abstract(参考訳): 神経細胞の細胞特性を特徴付けることは、脳内での機能を理解するのに不可欠である。
この探求において、バイオリアリスティック・モデルの生成は、マルチモーダルなセル・データセットの統合と因果関係の確立に中心的な役割を果たしている。
しかし、現在のモデリング手法は、実験ニューロンデータの可用性と固有の変動性に制約されているままである。
現在、生物現実主義モデルの決定論的形式主義は、実験的に観察された自然変動の考慮を妨げている。
深層学習はこの領域でますます重要になってきていますが、ニューロンの完全な生体物理学的複雑さ、非線形電圧ダイナミクス、可変性を捉えられません。
これらの欠点に対処するため,我々は,解釈可能なニューロン特徴の連続周波数変調埋め込みから電流注入によって誘導される体感電圧応答へのマッピングを学習するニューラルオペレーターフレームワークであるNOBLEを紹介する。
バイオリアリスティックニューロンモデルから生成された合成データに基づいて、NOBLEは本質的な実験的変動を考慮したニューラルダイナミクスの分布を予測する。
従来のバイオリアリスティックニューロンモデルとは異なり、埋め込み空間内での補間は、実験的に観察された応答と動的に一致するモデルを提供する。
NOBLEは、実験データに近い効率的な合成ニューロンの生成を可能にし、試行錯誤性を示し、数値解法よりも4200\times$のスピードアップを提供する。
NOBLEは、その一般化を実際の実験データで検証する最初の大規模ディープラーニングフレームワークである。
この目的のために、NOBLEは、細胞組成と計算、ニューロモルフィックアーキテクチャ、大規模脳回路、および一般的なニューロAI応用をよりよく理解するための扉を開く、ユニークで創発的な方法で基本的な神経特性をキャプチャする。
関連論文リスト
- Langevin Flows for Modeling Neural Latent Dynamics [81.81271685018284]
逐次変分自動エンコーダであるLangevinFlowを導入し、潜伏変数の時間的進化をアンダーダム化したLangevin方程式で制御する。
われわれのアプローチは、慣性、減衰、学習されたポテンシャル関数、力などの物理的事前を組み込んで、ニューラルネットワークにおける自律的および非自律的プロセスの両方を表現する。
本手法は,ロレンツ誘引器によって生成される合成神経集団に対する最先端のベースラインより優れる。
論文 参考訳(メタデータ) (2025-07-15T17:57:48Z) - Single-neuron deep generative model uncovers underlying physics of neuronal activity in Ca imaging data [0.0]
自己回帰変分オートエンコーダ(AVAE)を用いた単一ニューロン表現学習のための新しいフレームワークを提案する。
我々のアプローチでは、スパイク推論アルゴリズムを必要とせずに、個々のニューロンの信号を縮小次元空間に埋め込む。
AVAEは、より情報的で差別的な潜在表現を生成することによって、従来の線形手法よりも優れている。
論文 参考訳(メタデータ) (2025-01-24T16:33:52Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
最先端のシステム神経科学実験は大規模なマルチモーダルデータを生み出し、これらのデータセットは分析のための新しいツールを必要とする。
視覚領域と言語領域における大きな事前学習モデルの成功に触発されて、我々は大規模な細胞分解性神経スパイクデータの解析を自己回帰生成問題に再構成した。
我々はまず、シミュレーションデータセットでNeuroformerを訓練し、本質的なシミュレートされた神経回路の動作を正確に予測し、方向を含む基盤となる神経回路の接続性を推定した。
論文 参考訳(メタデータ) (2023-10-31T20:17:32Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
我々は、個々のニューロンの応答を明示的にモデル化するNDTベースのアーキテクチャであるSpatioTemporal Neural Data Transformer (STNDT)を紹介する。
本モデルは,4つのニューラルデータセット間での神経活動の推定において,アンサンブルレベルでの最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2022-06-09T18:54:23Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
本稿では,潜在モデルと従来のニューラルエンコーディングモデルから重要な要素を統合する手法を提案する。
我々の手法であるpi-VAEは、同定可能な変分自動エンコーダの最近の進歩にインスパイアされている。
人工データを用いてpi-VAEを検証し,それをラット海馬およびマカク運動野の神経生理学的データセットの解析に応用した。
論文 参考訳(メタデータ) (2020-11-09T22:00:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。