論文の概要: Was Residual Penalty and Neural Operators All We Needed for Solving Optimal Control Problems?
- arxiv url: http://arxiv.org/abs/2506.04742v1
- Date: Thu, 05 Jun 2025 08:22:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-06 21:53:49.60109
- Title: Was Residual Penalty and Neural Operators All We Needed for Solving Optimal Control Problems?
- Title(参考訳): 最適制御問題の解決に必要だった残酷さとニューラル演算子
- Authors: Oliver G. S. Lundqvist, Fabricio Oliveira,
- Abstract要約: 我々は、DeepONetのような単純なニューラルネットワークアーキテクチャが、複数の最適制御問題を解くことができることを示した。
各モデルに対して、コスト関数の異なる3つの問題を解き、全てのケースにおいて正確で一貫した性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have been used to solve optimal control problems, typically by training neural networks using a combined loss function that considers data, differential equation residuals, and objective costs. We show that including cost functions in the training process is unnecessary, advocating for a simpler architecture and streamlined approach by decoupling the optimal control problem from the training process. Thus, our work shows that a simple neural operator architecture, such as DeepONet, coupled with an unconstrained optimization routine, can solve multiple optimal control problems with a single physics-informed training phase and a subsequent optimization phase. We achieve this by adding a penalty term based on the differential equation residual to the cost function and computing gradients with respect to the control using automatic differentiation through the trained neural operator within an iterative optimization routine. We showcase our method on nine distinct optimal control problems by training three separate DeepONet models, each corresponding to a different differential equation. For each model, we solve three problems with varying cost functions, demonstrating accurate and consistent performance across all cases.
- Abstract(参考訳): ニューラルネットワークは、データ、微分方程式残差、目的コストを考慮した複合損失関数を用いてニューラルネットワークを訓練することで、最適な制御問題を解決するために使用されている。
トレーニングプロセスにコスト関数を含めることは不要であり、トレーニングプロセスから最適な制御問題を分離することで、よりシンプルなアーキテクチャと合理化アプローチを提唱する。
したがって、DeepONetのような単純なニューラルネットワークアーキテクチャと制約のない最適化ルーチンが組み合わさって、1つの物理インフォームドトレーニングフェーズとその後の最適化フェーズで複数の最適制御問題を解くことができることを示す。
我々は、反復最適化ルーチンにおいて、訓練されたニューラル演算子による自動微分を用いた制御に関して、コスト関数に残留する微分方程式と計算勾配に基づいてペナルティ項を追加することにより、これを実現する。
本稿では,異なる微分方程式に対応する3つのDeepONetモデルを訓練することにより,9つの異なる最適制御問題について紹介する。
各モデルに対して、コスト関数の異なる3つの問題を解き、全てのケースにおいて正確で一貫した性能を示す。
関連論文リスト
- Self-Supervised Penalty-Based Learning for Robust Constrained Optimization [4.297070083645049]
本稿では,自己教師付きペナルティに基づく損失関数を用いた学習に基づいて,パラメータ化制約付きロバスト最適化のための新しい手法を提案する。
我々のアプローチは、従来の解法よりも推論時間がかなり小さいニューラルネットワーク近似を効果的に学習することができる。
論文 参考訳(メタデータ) (2025-03-07T06:42:17Z) - Training Neural ODEs Using Fully Discretized Simultaneous Optimization [2.290491821371513]
ニューラルネットワークの正規微分方程式(Neural ODEs)の学習には、各エポックにおける微分方程式の解法が必要であるため、計算コストが高い。
特に、コロケーションに基づく完全に離散化された定式化を採用し、大規模な非線形最適化にIPOPT-aソルバを用いる。
この結果から,(コロケーションをベースとした)同時ニューラルODE訓練パイプラインの可能性が示唆された。
論文 参考訳(メタデータ) (2025-02-21T18:10:26Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Combinatorial Optimization with Physics-Inspired Graph Neural Networks [0.0]
最適化問題の解法としてグラフニューラルネットワークを用いる方法を示す。
ニューラルネットワークは、既存の解法よりも優れているか、あるいは優れていることが分かりました。
論文 参考訳(メタデータ) (2021-07-02T16:54:35Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z) - ODEN: A Framework to Solve Ordinary Differential Equations using
Artificial Neural Networks [0.0]
我々は、ニューラルネットワークの性能を評価するために、正確な解の知識を必要としない特定の損失関数を証明した。
ニューラルネットワークは、トレーニング領域内での継続的ソリューションの近似に熟練していることが示されている。
ユーザフレンドリで適応可能なオープンソースコード(ODE$mathcalN$)がGitHubで提供されている。
論文 参考訳(メタデータ) (2020-05-28T15:34:10Z) - Optimizing Wireless Systems Using Unsupervised and
Reinforced-Unsupervised Deep Learning [96.01176486957226]
無線ネットワークにおけるリソース割り当てとトランシーバーは、通常最適化問題の解決によって設計される。
本稿では,変数最適化と関数最適化の両問題を解くための教師なし・教師なし学習フレームワークを紹介する。
論文 参考訳(メタデータ) (2020-01-03T11:01:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。