CIVET: Systematic Evaluation of Understanding in VLMs
- URL: http://arxiv.org/abs/2506.05146v2
- Date: Thu, 19 Jun 2025 07:19:46 GMT
- Title: CIVET: Systematic Evaluation of Understanding in VLMs
- Authors: Massimo Rizzoli, Simone Alghisi, Olha Khomyn, Gabriel Roccabruna, Seyed Mahed Mousavi, Giuseppe Riccardi,
- Abstract summary: Vision-Language Models (VLMs) have achieved competitive performance in various tasks.<n>We study their capability regarding object properties and relations in a controlled and interpretable manner.<n>We introduce CIVET, a novel and framework for systematiC evaluatIon VialEd sTimuli.
- Score: 1.760351767085873
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While Vision-Language Models (VLMs) have achieved competitive performance in various tasks, their comprehension of the underlying structure and semantics of a scene remains understudied. To investigate the understanding of VLMs, we study their capability regarding object properties and relations in a controlled and interpretable manner. To this scope, we introduce CIVET, a novel and extensible framework for systematiC evaluatIon Via controllEd sTimuli. CIVET addresses the lack of standardized systematic evaluation for assessing VLMs' understanding, enabling researchers to test hypotheses with statistical rigor. With CIVET, we evaluate five state-of-the-art VLMs on exhaustive sets of stimuli, free from annotation noise, dataset-specific biases, and uncontrolled scene complexity. Our findings reveal that 1) current VLMs can accurately recognize only a limited set of basic object properties; 2) their performance heavily depends on the position of the object in the scene; 3) they struggle to understand basic relations among objects. Furthermore, a comparative evaluation with human annotators reveals that VLMs still fall short of achieving human-level accuracy.
Related papers
- VLM4D: Towards Spatiotemporal Awareness in Vision Language Models [66.833085504228]
We introduce V4DLM, the first benchmark specifically designed to evaluate visual language models (VLMs)<n>Our benchmark comprises diverse real-world and synthetic videos accompanied by carefully curated question-answer pairs.<n>We identify significant performance gaps compared to human baselines, highlighting fundamental deficiencies in existing models.
arXiv Detail & Related papers (2025-08-04T06:06:06Z) - Weakly-supervised VLM-guided Partial Contrastive Learning for Visual Language Navigation [36.17444261325021]
Visual Language Navigation (VLN) is a fundamental task within the field of Embodied AI, focusing on the ability of agents to navigate complex environments based on natural language instructions.<n>Existing methods rely on pre-trained backbone models for visual perception, which struggle with the dynamic viewpoints in VLN scenarios.<n>We propose Weakly-supervised Partial Contrastive Learning (WPCL), a method that enhances an agent's ability to identify objects from dynamic viewpoints in VLN scenarios without requiring VLM fine-tuning.
arXiv Detail & Related papers (2025-06-18T11:43:50Z) - Truly Assessing Fluid Intelligence of Large Language Models through Dynamic Reasoning Evaluation [75.26829371493189]
Large language models (LLMs) have demonstrated impressive reasoning capacities that mirror human-like thinking.<n>Existing reasoning benchmarks either focus on domain-specific knowledge (crystallized intelligence) or lack interpretability.<n>We propose DRE-Bench, a dynamic reasoning evaluation benchmark grounded in a hierarchical cognitive framework.
arXiv Detail & Related papers (2025-06-03T09:01:08Z) - Caption This, Reason That: VLMs Caught in the Middle [3.4820139118440676]
Vision-Language Models (VLMs) have shown remarkable progress in visual understanding in recent years.<n>They still lag behind human capabilities in specific visual tasks such as counting or relational reasoning.<n>We analyze VLM performance along core cognitive axes: Perception, Attention, and Memory.
arXiv Detail & Related papers (2025-05-24T14:25:48Z) - Video SimpleQA: Towards Factuality Evaluation in Large Video Language Models [69.68265487134686]
Video SimpleQA is the first comprehensive benchmark tailored for factuality evaluation of LVLMs.<n>Our work distinguishes from existing video benchmarks through the following key features.<n>Answers are crafted as unambiguous and definitively correct in a short format.
arXiv Detail & Related papers (2025-03-24T17:46:09Z) - Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models [10.792834356227118]
Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning.<n>Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities.
arXiv Detail & Related papers (2025-03-21T17:51:14Z) - Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [92.99416966226724]
We introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms.<n>We apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels.<n>Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance.
arXiv Detail & Related papers (2024-11-05T23:26:10Z) - AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [65.92331309449015]
We introduce AutoBench-V, an automated framework for serving evaluation on demand, i.e., benchmarking LVLMs based on specific aspects of model capability.<n>Through an extensive evaluation of nine popular LVLMs across five demanded user inputs, the framework shows effectiveness and reliability.
arXiv Detail & Related papers (2024-10-28T17:55:08Z) - Can Large Language Models Understand Context? [17.196362853457412]
This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models.
Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models.
As LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings.
arXiv Detail & Related papers (2024-02-01T18:55:29Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
Vision-language models (VLMs) have recently demonstrated strong efficacy as visual assistants that can generate human-like outputs.
We evaluate existing state-of-the-art VLMs and find that even the best-performing model is unable to demonstrate strong visual reasoning capabilities and consistency.
We propose a two-stage training framework aimed at improving both the reasoning performance and consistency of VLMs.
arXiv Detail & Related papers (2023-09-08T17:49:44Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.