論文の概要: ProRefine: Inference-Time Prompt Refinement with Textual Feedback
- arxiv url: http://arxiv.org/abs/2506.05305v2
- Date: Tue, 05 Aug 2025 17:56:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 15:23:34.28391
- Title: ProRefine: Inference-Time Prompt Refinement with Textual Feedback
- Title(参考訳): ProRefine: テキストフィードバックによる推論時間プロンプトリファインメント
- Authors: Deepak Pandita, Tharindu Cyril Weerasooriya, Ankit Parag Shah, Isabelle Diana May-Xin Ng, Christopher M. Homan, Wei Wei,
- Abstract要約: AgenticRefineは、複数のAIエージェントが協力して推論や計画といった複雑なタスクを遂行する。
本稿では,LLMのエージェントループを用いてテキストフィードバックを生成し,適用する,革新的な推論時間最適化手法ProRefineを紹介する。
ProRefineはゼロショットチェーンのベースラインを3~37ポイント上回っている。
- 参考スコア(独自算出の注目度): 8.261243439474322
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Agentic workflows, where multiple AI agents collaborate to accomplish complex tasks like reasoning or planning, play a substantial role in many cutting-edge commercial applications, and continue to fascinate researchers across nearly all fields for their potential to accomplish expensive, complex tasks that, until recently, only humans have been trusted to do. These workflows depend critically on the prompts used to provide the roles models play in such workflows. Poorly designed prompts that fail even slightly to guide individual agents can lead to sub-optimal performance that may snowball within a system of agents, limiting their reliability and scalability. To address this important problem of inference-time prompt optimization, we introduce ProRefine, an innovative inference-time optimization method that uses an agentic loop of LLMs to generate and apply textual feedback. ProRefine dynamically refines prompts for multi-step reasoning tasks without additional training or ground truth labels. Evaluated on five benchmark mathematical reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought baselines by 3 to 37 percentage points. This approach not only boosts accuracy but also allows smaller models to approach the performance of their larger counterparts. This highlights its potential for building more cost-effective and powerful hybrid AI systems, thereby democratizing access to high-performing AI.
- Abstract(参考訳): 複数のAIエージェントが協力して推論や計画などの複雑なタスクを遂行するエージェントワークフローは、最先端の多くの商用アプリケーションにおいて重要な役割を果たす。
これらのワークフローは、そのようなワークフローでモデルが果たす役割を提供するために使用されるプロンプトに大きく依存する。
あまり設計されていないプロンプトは、個々のエージェントをガイドするのに失敗するが、エージェントのシステム内で雪が降る可能性のある準最適パフォーマンスをもたらし、信頼性とスケーラビリティを制限できる。
提案手法は, LLMのエージェントループを用いてテキストフィードバックを生成し, 適用する革新的な推論時間最適化手法である。
ProRefineは、追加のトレーニングや地上の真理ラベルなしで、マルチステップ推論タスクのプロンプトを動的に洗練する。
ProRefineは5つのベンチマーク数学推論データセットで評価され、ゼロショットのチェーン・オブ・ノートのベースラインを3~37ポイント上回っている。
このアプローチは精度を高めるだけでなく、より小さなモデルでもより大きなモデルの性能にアプローチすることができる。
これにより、コスト効率が高く強力なハイブリッドAIシステムを構築する可能性を強調し、高性能AIへのアクセスを民主化する。
関連論文リスト
- Introspection of Thought Helps AI Agents [19.04968632268433]
大規模言語モデル(LLM)とマルチモーダルLLM(MLLM)が最も重要な役割を担い、AIエージェントの初期能力と限界を決定する。
本稿では,新しいLLM-Read コードを即座に設計することで,思考のイントロスペクション(INoT)を用いたAIエージェント推論フレームワークを提案する。
INoTの有効性は, 平均性能が7.95%向上し, ベースラインを超えることが確認された。
論文 参考訳(メタデータ) (2025-07-11T15:03:17Z) - Exploring Prompt Patterns in AI-Assisted Code Generation: Towards Faster and More Effective Developer-AI Collaboration [3.1861081539404137]
本稿では,AI支援コード生成に必要となるインタラクション数を最小化するために,構造化されたプロンプトパターンの適用について検討する。
我々は,開発者とAI間の往復通信を減らすことの有効性を評価するために,異なる7つのプロンプトパターンを分析した。
論文 参考訳(メタデータ) (2025-06-02T12:43:08Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThinkは、外部から推定されるタスクの難しさと内部で測定されたモデルの不確実性を統合する、シンプルで効果的なスキームである。
シーンの複雑さと予測信頼度に応じて推論の長さを圧縮することを学ぶ。
実験により,提案手法は推論効率と全体セグメンテーション性能の両方を改善した。
論文 参考訳(メタデータ) (2025-05-29T17:55:49Z) - The Real Barrier to LLM Agent Usability is Agentic ROI [110.31127571114635]
大規模言語モデル(LLM)エージェントは、人間とAIの相互作用において有望な変化を示す。
我々は、需要の高いマスマーケットアプリケーションにおいて、重要なユーザビリティギャップを強調します。
論文 参考訳(メタデータ) (2025-05-23T11:40:58Z) - On the Role of Feedback in Test-Time Scaling of Agentic AI Workflows [71.92083784393418]
エージェントAI(自律的な計画と行動を行うシステム)は広く普及しているが、複雑なタスクにおけるタスクの成功率は低いままである。
推論時のアライメントは、サンプリング、評価、フィードバックの3つのコンポーネントに依存します。
本稿では,様々な形態の批判から抽出されたフィードバックを繰り返し挿入するIterative Agent Decoding(IAD)を紹介する。
論文 参考訳(メタデータ) (2025-04-02T17:40:47Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - Memento No More: Coaching AI Agents to Master Multiple Tasks via Hints Internalization [56.674356045200696]
本稿では,複雑なメモシステムや事前の高品質な実演データを必要としない,複数のタスクに対する知識とスキルを取り入れたAIエージェントの訓練手法を提案する。
このアプローチでは,エージェントが新たな経験を収集し,ヒントの形で人間から補正フィードバックを受け取り,このフィードバックを重みに組み込む,反復的なプロセスを採用している。
Llama-3をベースとしたエージェントに実装することで,数ラウンドのフィードバックの後,高度なモデルGPT-4oとDeepSeek-V3をタスクセットで性能向上させる手法の有効性を実証する。
論文 参考訳(メタデータ) (2025-02-03T17:45:46Z) - A Multi-AI Agent System for Autonomous Optimization of Agentic AI Solutions via Iterative Refinement and LLM-Driven Feedback Loops [3.729242965449096]
本稿では,産業間におけるエージェントAIソリューションを自律的に最適化するフレームワークを提案する。
このフレームワークは、仮説を自律的に生成し、テストすることで、人間の入力なしに最適な性能を達成する。
ケーススタディでは、アウトプットの品質、妥当性、動作性が大幅に改善された。
論文 参考訳(メタデータ) (2024-12-22T20:08:04Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
我々は、人間の指示なしにタスクを予測および開始できるプロアクティブエージェントを開発するという課題に取り組む。
まず,実世界の人的活動を収集し,前向きなタスク予測を生成する。
これらの予測は、ヒトのアノテータによって受け入れられるか拒否されるかのどちらかとしてラベル付けされる。
ラベル付きデータは、人間の判断をシミュレートする報酬モデルをトレーニングするために使用される。
論文 参考訳(メタデータ) (2024-10-16T08:24:09Z) - Think Beyond Size: Adaptive Prompting for More Effective Reasoning [0.0]
本稿では,動的かつ反復的なフレームワークであるAdaptive Promptingを紹介する。
その結果、Adaptive Promptingは、算術的推論(GSM8K、MultiArithm)、論理的推論、コモンセンスタスクなど、様々な推論ベンチマークのパフォーマンスを著しく向上させることを示した。
提案手法は,計算効率を維持しつつ,GPT-4などの大規模モデルと競合する性能を実現する。
論文 参考訳(メタデータ) (2024-10-10T17:14:36Z) - In-context Demonstration Matters: On Prompt Optimization for Pseudo-Supervision Refinement [71.60563181678323]
大規模言語モデル(LLM)は様々なタスクで大きな成功を収めており、生成品質をさらに向上させるためには微調整が必要である場合もある。
これらの課題に対処する直接的な解決策は、教師なしの下流タスクから高信頼のデータを生成することである。
本稿では,プロンプトと全体的な擬似スーパービジョンを両立させる新しい手法,擬似教師付きデモアライメント・アライメント・アライメント・プロンプト・最適化(PAPO)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-04T03:39:28Z) - Towards Human-Level Understanding of Complex Process Engineering Schematics: A Pedagogical, Introspective Multi-Agent Framework for Open-Domain Question Answering [0.0]
化学・プロセス産業では、プロセス・フロー・ダイアグラム(PFD)とパイプ・アンド・インスツルメンテーション・ダイアグラム(P&ID)が設計、建設、保守に不可欠である。
生成型AIの最近の進歩は、ビジュアル質問回答(VQA)のプロセス図の理解と解釈の約束を示している。
本稿では,階層的かつマルチエージェントなRetrieval Augmented Generation(RAG)フレームワークを用いた,セキュアでオンプレミスなエンタープライズソリューションを提案する。
論文 参考訳(メタデータ) (2024-08-24T19:34:04Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [31.238220405009617]
推論に取り組むために大規模な言語モデル(LLM)をエクスプロイトすることは、注目を集めている。
複雑な論理的問題において満足な結果を達成することは依然として非常に困難であり、コンテキスト内の多くの前提とマルチホップ推論が特徴である。
本研究は,まず情報フローの観点からそのメカニズムを考察し,不規則な内容や無関係な内容を扱う際に,人間のような認知バイアスに類似した困難に直面することを明らかにする。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z) - Tree-of-Mixed-Thought: Combining Fast and Slow Thinking for Multi-hop
Visual Reasoning [16.495754104540605]
大規模言語モデル(LLM)は、視覚的推論のような複雑な推論タスクのためのコードライクな計画を生成することができる。
ワンストップ推論 (fast) とツリー・オブ・シント (slow) を統合した階層型計画探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-08-18T16:21:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。