Quasinormal modes and complexity in saddle-dominated SU(N) spin systems
- URL: http://arxiv.org/abs/2506.05458v1
- Date: Thu, 05 Jun 2025 18:00:00 GMT
- Title: Quasinormal modes and complexity in saddle-dominated SU(N) spin systems
- Authors: Sergio E. Aguilar-Gutierrez, Yichao Fu, Kuntal Pal, Klaas Parmentier,
- Abstract summary: We study spin systems that mimic the behavior of particles in $N$-dimensional de Sitter space for $N=2,3$.<n>We find that, even though the early-time properties of these quantities are governed by the saddle points, a close look at the late-time behavior reveals the integrable nature of the system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study SU($N$) spin systems that mimic the behavior of particles in $N$-dimensional de Sitter space for $N=2,3$. Their Hamiltonians describe a dynamical system with hyperbolic fixed points, leading to emergent quasinormal modes at the quantum level. These manifest as quasiparticle peaks in the density of states. For a particle in 2-dimensional de Sitter, we find both principal and complementary series densities of states from a PT-symmetric version of the Lipkin-Meshkov-Glick model, having two hyperbolic fixed points in the classical phase space. We then study different spectral and dynamical properties of this class of models, including level spacing statistics, two-point functions, squared commutators, spectral form factor, Krylov operator and state complexity. We find that, even though the early-time properties of these quantities are governed by the saddle points -- thereby in some cases mimicking corresponding properties of chaotic systems, a close look at the late-time behavior reveals the integrable nature of the system.
Related papers
- Strong and weak symmetries and their spontaneous symmetry breaking in mixed states emerging from the quantum Ising model under multiple decoherence [0.0]
We study phenomena generated by interplay between two types of decoherence applied to the one-dimensional transverse field Ising model (TFIM)<n>We find various types of mixed states emergent from the ground states of the TFIM.<n>In that study, strong and weak $Z$ symmetries play an important role, for which we introduce efficient order parameters.
arXiv Detail & Related papers (2024-12-17T10:00:29Z) - Scattering Neutrinos, Spin Models, and Permutations [42.642008092347986]
We consider a class of Heisenberg all-to-all coupled spin models inspired by neutrino interactions in a supernova with $N$ degrees of freedom.
These models are characterized by a coupling matrix that is relatively simple in the sense that there are only a few, relative to $N$, non-trivial eigenvalues.
arXiv Detail & Related papers (2024-06-26T18:27:15Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Characterizing Floquet topological phases by quench dynamics: A
multiple-subsystem approach [11.15439488946414]
We investigate the dynamical characterization theory for periodically driven systems in which Floquet topology can be fully detected.
We propose a more flexible scheme to characterize a generic class of $d$-dimensional Floquet topological phases.
This study provides an immediately implementable approach for dynamically classifying Floquet topological phases in ultracold atoms or other quantum simulators.
arXiv Detail & Related papers (2023-10-12T15:23:44Z) - Quasi-integrability and nonlinear resonances in cold atoms under
modulation [11.286969347667473]
We present an exact analysis of the evolution of a two-level system under the action of a time-dependent matrix Hamiltonian.
The dynamics is shown to evolve on two coupled potential energy surfaces, one of them binding while the other one scattering type.
arXiv Detail & Related papers (2023-09-08T09:42:25Z) - Quantum Coherence of Critical Unstable Two-Level Systems [0.0]
We study in detail the dynamics of unstable two-level quantum systems by adopting the Bloch-sphere formalism of qubits.
We find that critical unstable qubit systems exhibit atypical behaviours like coherence--decoherence oscillations.
arXiv Detail & Related papers (2022-12-12T16:56:33Z) - Multipartite entangled states in dipolar quantum simulators [0.0]
We show that the native Hamiltonian dynamics of state-of-the-art quantum simulation platforms can act as a robust source of multipartite entanglement.
Our results suggest that the native Hamiltonian dynamics of state-of-the-art quantum simulation platforms, such as Rydberg-atom arrays, can act as a robust source of multipartite entanglement.
arXiv Detail & Related papers (2022-05-08T16:23:48Z) - Loschmidt amplitude spectrum in dynamical quantum phase transitions [0.0]
We study how the system behaves in the vicinity of dynamical quantum phase transitions (DQPTs)
Our findings provide a better understanding of the characteristics of the out-of-equilibrium system around DQPT.
arXiv Detail & Related papers (2022-03-14T10:54:31Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Entanglement and U(D)-spin squeezing in symmetric multi-quDit systems
and applications to quantum phase transitions in Lipkin-Meshkov-Glick D-level
atom models [0.0]
Collective spin operators for symmetric multi-quDit systems generate a U$(D)$ symmetry.
We explore generalizations to arbitrary $D$ of SU(2)-spin coherent states and their adaptation to parity.
We evaluate level and particle entanglement for symmetric multi-quDit states with linear and von Neumann entropies.
arXiv Detail & Related papers (2021-04-21T15:19:43Z) - Boundary time crystals in collective $d$-level systems [64.76138964691705]
Boundary time crystals are non-equilibrium phases of matter occurring in quantum systems in contact to an environment.
We study BTC's in collective $d$-level systems, focusing in the cases with $d=2$, $3$ and $4$.
arXiv Detail & Related papers (2021-02-05T19:00:45Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.