Zero-Shot Event Causality Identification via Multi-source Evidence Fuzzy Aggregation with Large Language Models
- URL: http://arxiv.org/abs/2506.05675v2
- Date: Mon, 09 Jun 2025 03:04:44 GMT
- Title: Zero-Shot Event Causality Identification via Multi-source Evidence Fuzzy Aggregation with Large Language Models
- Authors: Zefan Zeng, Xingchen Hu, Qing Cheng, Weiping Ding, Wentao Li, Zhong Liu,
- Abstract summary: Event Causality Identification (ECI) aims to detect causal relationships between events in textual contexts.<n>Existing ECI models predominantly rely on supervised methodologies, suffering from dependence on large-scale annotated data.<n>We propose MEFA, a novel zero-shot framework based on Multi-source Evidence Fuzzy Aggregation.
- Score: 11.541829239773643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event Causality Identification (ECI) aims to detect causal relationships between events in textual contexts. Existing ECI models predominantly rely on supervised methodologies, suffering from dependence on large-scale annotated data. Although Large Language Models (LLMs) enable zero-shot ECI, they are prone to causal hallucination-erroneously establishing spurious causal links. To address these challenges, we propose MEFA, a novel zero-shot framework based on Multi-source Evidence Fuzzy Aggregation. First, we decompose causality reasoning into three main tasks (temporality determination, necessity analysis, and sufficiency verification) complemented by three auxiliary tasks. Second, leveraging meticulously designed prompts, we guide LLMs to generate uncertain responses and deterministic outputs. Finally, we quantify LLM's responses of sub-tasks and employ fuzzy aggregation to integrate these evidence for causality scoring and causality determination. Extensive experiments on three benchmarks demonstrate that MEFA outperforms second-best unsupervised baselines by 6.2% in F1-score and 9.3% in precision, while significantly reducing hallucination-induced errors. In-depth analysis verify the effectiveness of task decomposition and the superiority of fuzzy aggregation.
Related papers
- Causal Prompting for Implicit Sentiment Analysis with Large Language Models [21.39152516811571]
Implicit Sentiment Analysis (ISA) aims to infer sentiment that is implied rather than explicitly stated.<n>Recent prompting-based methods using Large Language Models (LLMs) have shown promise in ISA.<n>We propose CAPITAL, a causal prompting framework that incorporates front-door adjustment into CoT reasoning.
arXiv Detail & Related papers (2025-07-01T03:01:09Z) - CLATTER: Comprehensive Entailment Reasoning for Hallucination Detection [60.98964268961243]
We propose that guiding models to perform a systematic and comprehensive reasoning process allows models to execute much finer-grained and accurate entailment decisions.<n>We define a 3-step reasoning process, consisting of (i) claim decomposition, (ii) sub-claim attribution and entailment classification, and (iii) aggregated classification, showing that such guided reasoning indeed yields improved hallucination detection.
arXiv Detail & Related papers (2025-06-05T17:02:52Z) - Truth in the Few: High-Value Data Selection for Efficient Multi-Modal Reasoning [71.3533541927459]
We propose a novel data selection paradigm termed Activation Reasoning Potential (RAP)<n>RAP identifies cognitive samples by estimating each sample's potential to stimulate genuine multi-modal reasoning.<n>Our RAP method consistently achieves superior performance using only 9.3% of the training data, while reducing computational costs by over 43%.
arXiv Detail & Related papers (2025-06-05T08:40:24Z) - Exploring LLM Reasoning Through Controlled Prompt Variations [0.9217021281095907]
We evaluate how well state-of-the-art models maintain logical consistency and correctness when confronted with four categories of prompt perturbations.<n>Our experiments, conducted on thirteen open-source and closed-source LLMs, reveal that introducing irrelevant context within the model's context window significantly degrades performance.<n>Certain perturbations inadvertently trigger chain-of-thought-like reasoning behaviors, even without explicit prompting.
arXiv Detail & Related papers (2025-04-02T20:18:50Z) - Can Large Language Models Help Experimental Design for Causal Discovery? [94.66802142727883]
Large Language Model Guided Intervention Targeting (LeGIT) is a robust framework that effectively incorporates LLMs to augment existing numerical approaches for the intervention targeting in causal discovery.<n>LeGIT demonstrates significant improvements and robustness over existing methods and even surpasses humans.
arXiv Detail & Related papers (2025-03-03T03:43:05Z) - ACCESS : A Benchmark for Abstract Causal Event Discovery and Reasoning [47.540945048737434]
We introduce textttACCESS, a benchmark designed for discovery and reasoning over abstract causal events.<n>We propose a pipeline for identifying abstractions for event generalizations from a large-scale dataset of implicit commonsense causal knowledge.
arXiv Detail & Related papers (2025-02-12T06:19:02Z) - Attention-guided Self-reflection for Zero-shot Hallucination Detection in Large Language Models [20.175106988135454]
We introduce a novel Attention-Guided SElf-Reflection (AGSER) approach for zero-shot hallucination detection in Large Language Models (LLMs)<n>The AGSER method utilizes attention contributions to categorize the input query into attentive and non-attentive queries.<n>In addition to its efficacy in detecting hallucinations, AGSER notably reduces computational overhead, requiring only three passes through the LLM and utilizing two sets of tokens.
arXiv Detail & Related papers (2025-01-17T07:30:01Z) - What Makes In-context Learning Effective for Mathematical Reasoning: A Theoretical Analysis [81.15503859645149]
In this paper, we aim to theoretically analyze the impact of in-context demonstrations on large language models' reasoning performance.<n>We propose a straightforward, generalizable, and low-complexity demonstration selection method named LMS3.
arXiv Detail & Related papers (2024-12-11T11:38:11Z) - Prompting or Fine-tuning? Exploring Large Language Models for Causal Graph Validation [0.0]
This study explores the capability of Large Language Models to evaluate causality in causal graphs.<n>Our study compares two approaches: (1) prompting-based method for zero-shot and few-shot causal inference and, (2) fine-tuning language models for the causal relation prediction task.
arXiv Detail & Related papers (2024-05-29T09:06:18Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.