論文の概要: Scoring the Unscorables: Cyber Risk Assessment Beyond Internet Scans
- arxiv url: http://arxiv.org/abs/2506.06604v1
- Date: Sat, 07 Jun 2025 00:44:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.356558
- Title: Scoring the Unscorables: Cyber Risk Assessment Beyond Internet Scans
- Title(参考訳): サイバーリスクのリスク評価はインターネットを超過する
- Authors: Armin Sarabi, Manish Karir, Mingyan Liu,
- Abstract要約: パブリックかつ容易に利用可能な技術シグネチャを用いて、高度に正確なサイバーリスク評価モデルを構築することが可能であることを示す。
我々の研究では、これらの技術署名と組織のサイバーセキュリティ姿勢には強い関係があることが示されています。
- 参考スコア(独自算出の注目度): 7.449694025927039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present a study on using novel data types to perform cyber risk quantification by estimating the likelihood of a data breach. We demonstrate that it is feasible to build a highly accurate cyber risk assessment model using public and readily available technology signatures obtained from crawling an organization's website. This approach overcomes the limitations of previous similar approaches that relied on large-scale IP address based scanning data, which suffers from incomplete/missing IP address mappings as well as the lack of such data for large numbers of small and medium-sized organizations (SMEs). In comparison to scan data, technology digital signature data is more readily available for millions of SMEs. Our study shows that there is a strong relationship between these technology signatures and an organization's cybersecurity posture. In cross-validating our model using different cyber incident datasets, we also highlight the key differences between ransomware attack victims and the larger population of cyber incident and data breach victims.
- Abstract(参考訳): 本稿では,新たなデータタイプを用いて,データ漏洩の可能性を推定し,サイバーリスクの定量化を行う。
組織Webサイトをクロールすることによって得られる,公開かつ手軽に利用可能な技術シグネチャを用いて,高精度なサイバーリスク評価モデルを構築することが可能であることを実証した。
このアプローチは、大規模なIPアドレスベースのスキャンデータに依存する従来の類似したアプローチの限界を克服する。
スキャンデータと比較して、技術デジタル署名データは数百万の中小企業で容易に利用することができる。
我々の研究では、これらの技術署名と組織のサイバーセキュリティ姿勢には強い関係があることが示されています。
異なるサイバーインシデントデータセットを用いてモデルを相互検証する際、ランサムウェア攻撃の被害者と、サイバーインシデントとデータ侵害の被害者の人口の大きな違いも強調する。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Mind the Gap: Securely modeling cyber risk based on security deviations
from a peer group [2.7910505923792646]
本稿では,特定の経済セクターにおいて,ピアに対するサイバー姿勢とサイバーリスクを推定する新たな枠組みを提案する。
我々は、組織とその仲間間の重み付けされたセキュリティギャップを表す、Defense Gap Indexと呼ばれる新しいトップライン変数を導入する。
このアプローチを,25の大企業から収集したデータを用いて,特定の分野に適用する。
論文 参考訳(メタデータ) (2024-02-06T17:22:45Z) - Stepping out of Flatland: Discovering Behavior Patterns as Topological Structures in Cyber Hypergraphs [0.7835894511242797]
本稿では,ハイパーグラフとトポロジ理論に基づく新しいフレームワークを提案する。
大規模なサイバーネットワークデータセットで具体例を示す。
論文 参考訳(メタデータ) (2023-11-08T00:00:33Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - A robust statistical framework for cyber-vulnerability prioritisation under partial information in threat intelligence [0.0]
この研究は、サイバー脆弱性に関する不確実性の下で、定量的および質的な推論のための頑健な統計的枠組みを導入する。
我々は,既存の脆弱性の集合全体の部分的知識の下で,ばらつきのランクに適合する新しい精度尺度を同定する。
本稿では,サイバー脆弱性に関する部分的知識が,運用シナリオにおける脅威インテリジェンスと意思決定に与える影響について論じる。
論文 参考訳(メタデータ) (2023-02-16T15:05:43Z) - Preventing Unauthorized Use of Proprietary Data: Poisoning for Secure
Dataset Release [52.504589728136615]
公開したデータを最小限に修正して、他人がトレーニングモデルに乗らないようにするデータ中毒法を開発しています。
我々は,imagenet分類と顔認識によるアプローチの成功を実証する。
論文 参考訳(メタデータ) (2021-02-16T19:12:34Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - PicoDomain: A Compact High-Fidelity Cybersecurity Dataset [0.9281671380673305]
現在のサイバーセキュリティデータセットは、根拠のない真実を提供するか、匿名化されたデータでそれを行う。
既存のデータセットのほとんどは、プロトタイプ開発中に扱いにくいほどの大きさです。
本稿では,現実的な侵入から得られたZeekログのコンパクトな高忠実度収集であるPicoDomainデータセットを開発した。
論文 参考訳(メタデータ) (2020-08-20T20:18:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。