論文の概要: Understanding Cross-Domain Adaptation in Low-Resource Topic Modeling
- arxiv url: http://arxiv.org/abs/2506.07453v1
- Date: Mon, 09 Jun 2025 05:59:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:10.819611
- Title: Understanding Cross-Domain Adaptation in Low-Resource Topic Modeling
- Title(参考訳): 低リソーストピックモデリングにおけるクロスドメイン適応の理解
- Authors: Pritom Saha Akash, Kevin Chen-Chuan Chang,
- Abstract要約: 我々は、低リソースのトピックモデリングにドメイン適応を導入し、高リソースのソースドメインが低リソースのターゲットドメインに無関係なコンテンツで圧倒することなく通知する。
DALTAは、ドメイン不変の機能に共有エンコーダ、ドメイン固有ニュアンスに特化されたデコーダ、関連する情報を選択的に転送するための逆アライメントを利用する新しいフレームワークである。
多様な低リソースデータセットの実験により、DALTAはトピックコヒーレンス、安定性、転送可能性の観点から、最先端の手法を一貫して上回ることを示した。
- 参考スコア(独自算出の注目度): 25.915607750636333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topic modeling plays a vital role in uncovering hidden semantic structures within text corpora, but existing models struggle in low-resource settings where limited target-domain data leads to unstable and incoherent topic inference. We address this challenge by formally introducing domain adaptation for low-resource topic modeling, where a high-resource source domain informs a low-resource target domain without overwhelming it with irrelevant content. We establish a finite-sample generalization bound showing that effective knowledge transfer depends on robust performance in both domains, minimizing latent-space discrepancy, and preventing overfitting to the data. Guided by these insights, we propose DALTA (Domain-Aligned Latent Topic Adaptation), a new framework that employs a shared encoder for domain-invariant features, specialized decoders for domain-specific nuances, and adversarial alignment to selectively transfer relevant information. Experiments on diverse low-resource datasets demonstrate that DALTA consistently outperforms state-of-the-art methods in terms of topic coherence, stability, and transferability.
- Abstract(参考訳): トピックモデリングはテキストコーパス内の隠れセマンティック構造を明らかにする上で重要な役割を担っているが、既存のモデルは、限られたターゲットドメインデータが不安定で一貫性のないトピック推論につながる低リソース設定で苦労している。
低リソースのトピックモデリングにドメイン適応を導入することで、この課題に対処する。高リソースのソースドメインは、無関係なコンテンツでそれを克服することなく、低リソースのターゲットドメインに通知する。
我々は,実効的な知識伝達が両領域の堅牢性に依存することを示す有限サンプル一般化を定め,遅延空間の差を最小限に抑え,データへの過度な適合を防止する。
DALTA(Domain-Aligned Latent Topic Adaptation)は、ドメイン不変機能に共有エンコーダ、ドメイン固有ニュアンスに特化デコーダ、関連する情報を選択的に転送するための対向アライメントを新たに導入したフレームワークである。
多様な低リソースデータセットの実験により、DALTAはトピックコヒーレンス、安定性、転送可能性の観点から、最先端の手法を一貫して上回ることを示した。
関連論文リスト
- xTED: Cross-Domain Adaptation via Diffusion-Based Trajectory Editing [21.37585797507323]
ドメイン間政策伝達手法は主に、ポリシー学習を容易にするために、ドメインの対応や修正を学習することを目的としている。
本稿では,クロスドメイントラジェクトリ適応のために特別に設計された拡散モデルを用いたクロスドメイントラジェクトリ・EDitingフレームワークを提案する。
提案するモデルアーキテクチャは,対象データ内の動的パターンだけでなく,状態,行動,報酬間の複雑な依存関係を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-09-13T10:07:28Z) - StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
単一のドメインの一般化(単一DG)は、単一のトレーニングドメインからのみ見えないドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
最先端のアプローチは、主に新しいデータを合成するために、敵対的な摂動やスタイルの強化といったデータ拡張に頼っている。
データ拡張の過程で、ソースと擬似ドメインのアライメントを明示的に考慮したemphStyDeStyを提案する。
論文 参考訳(メタデータ) (2024-06-01T02:41:34Z) - Revisiting the Domain Shift and Sample Uncertainty in Multi-source
Active Domain Transfer [69.82229895838577]
Active Domain Adaptation (ADA)は、アノテートするターゲットデータの限られた数を選択することで、新しいターゲットドメインにおけるモデル適応を最大限に向上することを目的としている。
この設定は、複数のソースからトレーニングデータを収集するより実践的なシナリオを無視します。
これは、ADAを単一のソースドメインから複数のソースドメインに拡張する、新しい、挑戦的な知識転送の設定を目標にしています。
論文 参考訳(メタデータ) (2023-11-21T13:12:21Z) - Robust Unsupervised Domain Adaptation by Retaining Confident Entropy via
Edge Concatenation [7.953644697658355]
教師なしのドメイン適応は、セマンティックセグメンテーションネットワークをトレーニングするための広範なピクセルレベルのアノテーションの必要性を軽減することができる。
本稿では,エントロピーに基づく対向ネットワーク内における内部情報と外部情報の相乗効果を利用した新しいドメイン適応手法を提案する。
我々は、より効果的なセグメンテーションのために多様な情報を統合する確率共有ネットワークを考案した。
論文 参考訳(メタデータ) (2023-10-11T02:50:16Z) - Generalizing to Unseen Domains with Wasserstein Distributional Robustness under Limited Source Knowledge [22.285156929279207]
ドメインの一般化は、目に見えないターゲットドメインでうまく機能する普遍的なモデルを学ぶことを目的としている。
We propose a novel domain generalization framework called Wasserstein Distributionally Robust Domain Generalization (WDRDG)。
論文 参考訳(メタデータ) (2022-07-11T14:46:50Z) - Balancing Discriminability and Transferability for Source-Free Domain
Adaptation [55.143687986324935]
従来のドメイン適応(DA)技術は、ドメイン不変表現を学習することでドメイン転送性を改善することを目的としている。
ラベル付けされたソースとラベル付けされていないターゲットへの同時アクセス要件は、ソースフリーなDA設定に適さない。
そこで本研究では,原文と翻訳サンプルの混在が識別可能性と伝達可能性のトレードオフを促進することを示す新しい知見を導出する。
論文 参考訳(メタデータ) (2022-06-16T09:06:22Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation(UDA)は、セマンティックセグメンテーションのための畳み込みニューラルネットワークベースのアプローチがピクセルレベルの注釈付きデータに大きく依存するという課題に取り組むことができる。
そこで本稿では,十分に訓練されたソースモデルとラベルなしのターゲットドメインデータセットのみを適用可能な,意味セグメンテーションのためのソースフリーなドメイン適応フレームワークsfdaを提案する。
論文 参考訳(メタデータ) (2021-03-30T14:14:29Z) - Domain Conditioned Adaptation Network [90.63261870610211]
本稿では,ドメイン条件付きチャネルアテンション機構を用いて,異なる畳み込みチャネルを励起するドメイン条件適応ネットワーク(DCAN)を提案する。
これは、ディープDAネットワークのドメインワイドな畳み込みチャネルアクティベーションを探求する最初の試みである。
論文 参考訳(メタデータ) (2020-05-14T04:23:24Z) - Towards Inheritable Models for Open-Set Domain Adaptation [56.930641754944915]
本稿では、将来、ソースデータセットが存在しない場合の適応を容易にするために、ソース学習モデルを用いた実用的なドメイン適応パラダイムを提案する。
本稿では,ソースデータがない場合でも,対象領域に対して最適なソースモデルの選択を可能にするために,継承可能性の定量化を目的とする手法を提案する。
論文 参考訳(メタデータ) (2020-04-09T07:16:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。