論文の概要: Neuralized Fermionic Tensor Networks for Quantum Many-Body Systems
- arxiv url: http://arxiv.org/abs/2506.08329v1
- Date: Tue, 10 Jun 2025 01:33:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-13 15:37:22.307787
- Title: Neuralized Fermionic Tensor Networks for Quantum Many-Body Systems
- Title(参考訳): 量子多体系のためのニューラルネットワークフェルミオンテンソルネットワーク
- Authors: Si-Jing Du, Garnet Kin-Lic Chan,
- Abstract要約: 神経化フェルミオンテンソルネットワーク状態(NN-fTNS)の分類について述べる。
NN-fTNSは、局所テンソルの構成依存型ニューラルネットワーク変換を通じてフェルミオンテンソルネットワークに非線形性を導入する。
既存のフェルミオン性神経量子状態(NQS)と比較して、NN-fTNSは物理的に動機付けられた代替フェルミオン構造を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe a class of neuralized fermionic tensor network states (NN-fTNS) that introduce non-linearity into fermionic tensor networks through configuration-dependent neural network transformations of the local tensors. The construction uses the fTNS algebra to implement a natural fermionic sign structure and is compatible with standard tensor network algorithms, but gains enhanced expressivity through the neural network parametrization. Using the 1D and 2D Fermi-Hubbard models as benchmarks, we demonstrate that NN-fTNS achieve order of magnitude improvements in the ground-state energy compared to pure fTNS with the same bond dimension, and can be systematically improved through both the tensor network bond dimension and the neural network parametrization. Compared to existing fermionic neural quantum states (NQS) based on Slater determinants and Pfaffians, NN-fTNS offer a physically motivated alternative fermionic structure. Furthermore, compared to such states, NN-fTNS naturally exhibit improved computational scaling and we demonstrate a construction that achieves linear scaling with the lattice size.
- Abstract(参考訳): 本稿では, 局所テンソルの構成依存型ニューラルネットワーク変換により, フェルミオンテンソルネットワークに非線形性を導入するニューラル化フェルミオンテンソルネットワーク状態(NN-fTNS)について述べる。
この構造はfTNS代数を用いて自然なフェルミオン性符号構造を実装し、標準テンソルネットワークアルゴリズムと互換性があるが、ニューラルネットワークのパラメトリゼーションにより表現性が向上する。
1Dおよび2Dフェルミ-ハバードモデルをベンチマークとして、NN-fTNSが、同じ結合次元の純粋なfTNSと比較して、基底状態エネルギーの桁違いの改善を実現し、テンソルネットワーク結合次元とニューラルネットワークパラメトリゼーションの両方によって体系的に改善できることを実証した。
既存のフェルミオン性神経量子状態(NQS)と比較して、NN-fTNSは物理的に動機付けられた代替フェルミオン構造を提供する。
さらに、これらの状態と比較して、NN-fTNSは自然に計算スケーリングの改善を示し、格子サイズで線形スケーリングを実現する構造を示す。
関連論文リスト
- Novel Kernel Models and Exact Representor Theory for Neural Networks Beyond the Over-Parameterized Regime [52.00917519626559]
本稿では、ニューラルネットワークの2つのモデルと、任意の幅、深さ、トポロジーのニューラルネットワークに適用可能なトレーニングについて述べる。
また、局所外在性神経核(LeNK)の観点から、非正規化勾配降下を伴う階層型ニューラルネットワークトレーニングのための正確な表現子理論を提示する。
この表現論は、ニューラルネットワークトレーニングにおける高次統計学の役割と、ニューラルネットワークのカーネルモデルにおけるカーネル進化の影響について洞察を与える。
論文 参考訳(メタデータ) (2024-05-24T06:30:36Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Equivariant Matrix Function Neural Networks [1.8717045355288808]
解析行列同変関数を通じて非局所的相互作用をパラメータ化する新しいアーキテクチャであるマトリックス関数ニューラルネットワーク(MFNs)を導入する。
MFNは量子系の複雑な非局所的な相互作用を捉えることができ、新しい最先端の力場への道を歩むことができる。
論文 参考訳(メタデータ) (2023-10-16T14:17:00Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Variational Tensor Neural Networks for Deep Learning [0.0]
深部ニューラルネットワーク(NN)へのテンソルネットワーク(TN)の統合を提案する。
これにより、大きなパラメータ空間上で効率的にトレーニングできるスケーラブルなテンソルニューラルネットワーク(TNN)アーキテクチャが実現される。
我々はTNNモデルを設計し、線形および非線形回帰、データ分類、MNIST手書き桁の画像認識のためのベンチマーク結果を提供することにより、提案手法の精度と効率を検証した。
論文 参考訳(メタデータ) (2022-11-26T20:24:36Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Automatic Cross-Domain Transfer Learning for Linear Regression [0.0]
本稿では,線形回帰問題に対する伝達学習能力の拡張を支援する。
通常のデータセットでは、移行学習に潜伏したドメイン情報が利用できると仮定する。
論文 参考訳(メタデータ) (2020-05-08T15:05:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。