Evaluating Generative Vehicle Trajectory Models for Traffic Intersection Dynamics
- URL: http://arxiv.org/abs/2506.08963v1
- Date: Tue, 10 Jun 2025 16:36:42 GMT
- Title: Evaluating Generative Vehicle Trajectory Models for Traffic Intersection Dynamics
- Authors: Yash Ranjan, Rahul Sengupta, Anand Rangarajan, Sanjay Ranka,
- Abstract summary: Deep Generative models of traffic dynamics at signalized intersections can help traffic authorities better understand the efficiency and safety aspects.<n>At present, models are evaluated on computational metrics that primarily look at trajectory reconstruction errors.<n>We provide a comprehensive analytics tool to train, run, and evaluate models with metrics that give better insights into model performance from a traffic engineering point of view.
- Score: 8.484294935626224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traffic Intersections are vital to urban road networks as they regulate the movement of people and goods. However, they are regions of conflicting trajectories and are prone to accidents. Deep Generative models of traffic dynamics at signalized intersections can greatly help traffic authorities better understand the efficiency and safety aspects. At present, models are evaluated on computational metrics that primarily look at trajectory reconstruction errors. They are not evaluated online in a `live' microsimulation scenario. Further, these metrics do not adequately consider traffic engineering-specific concerns such as red-light violations, unallowed stoppage, etc. In this work, we provide a comprehensive analytics tool to train, run, and evaluate models with metrics that give better insights into model performance from a traffic engineering point of view. We train a state-of-the-art multi-vehicle trajectory forecasting model on a large dataset collected by running a calibrated scenario of a real-world urban intersection. We then evaluate the performance of the prediction models, online in a microsimulator, under unseen traffic conditions. We show that despite using ideally-behaved trajectories as input, and achieving low trajectory reconstruction errors, the generated trajectories show behaviors that break traffic rules. We introduce new metrics to evaluate such undesired behaviors and present our results.
Related papers
- Traffic-Aware Pedestrian Intention Prediction [2.5240171181791276]
This paper presents a Traffic-Aware Spatio-Temporal Graph Convolutional Network (TA-STGCN) that integrates traffic signs and their states into pedestrian intention prediction.<n>Our approach introduces the integration of dynamic traffic signal states and bounding box size as key features, allowing the model to capture both spatial and temporal dependencies in complex urban environments.
arXiv Detail & Related papers (2025-07-16T17:20:36Z) - IntTrajSim: Trajectory Prediction for Simulating Multi-Vehicle driving at Signalized Intersections [8.484294935626224]
Traffic simulators are widely used to study the operational efficiency of road infrastructure.<n>Their rule-based approach limits their ability to mimic real-world driving behavior.<n>We propose traffic engineering-related metrics to evaluate generative trajectory prediction models.
arXiv Detail & Related papers (2025-06-10T16:27:42Z) - Learning Traffic Anomalies from Generative Models on Real-Time Observations [49.1574468325115]
We use the Spatiotemporal Generative Adversarial Network (STGAN) framework to capture complex spatial and temporal dependencies in traffic data.<n>We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020.<n>Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates.
arXiv Detail & Related papers (2025-02-03T14:23:23Z) - A Multi-Loss Strategy for Vehicle Trajectory Prediction: Combining Off-Road, Diversity, and Directional Consistency Losses [68.68514648185828]
Trajectory prediction is essential for the safety and efficiency of planning in autonomous vehicles.<n>Current models often fail to fully capture complex traffic rules and the complete range of potential vehicle movements.<n>This study introduces three novel loss functions: Offroad Loss, Direction Consistency Error, and Diversity Loss.
arXiv Detail & Related papers (2024-11-29T14:47:08Z) - Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Enhancing Traffic Flow Prediction using Outlier-Weighted AutoEncoders:
Handling Real-Time Changes [0.7614628596146602]
We introduce the Outlier Weighted Autoencoder Modeling (OWAM) framework.
OWAM employs autoencoders for local outlier detection and generates correlation scores to assess neighboring traffic's influence.
This information enhances the traffic model's performance and supports effective real-time updates.
arXiv Detail & Related papers (2023-12-27T14:44:58Z) - SEPT: Towards Efficient Scene Representation Learning for Motion
Prediction [19.111948522155004]
This paper presents SEPT, a modeling framework that leverages self-supervised learning to develop powerful models for complex traffic scenes.
experiments demonstrate that SEPT, without elaborate architectural design or feature engineering, achieves state-of-the-art performance on the Argoverse 1 and Argoverse 2 motion forecasting benchmarks.
arXiv Detail & Related papers (2023-09-26T21:56:03Z) - Enhancing Spatiotemporal Traffic Prediction through Urban Human Activity
Analysis [6.8775337739726226]
We propose an improved traffic prediction method based on graph convolution deep learning algorithms.
We leverage human activity frequency data from National Household Travel Survey to enhance the inference capability of a causal relationship between activity and traffic patterns.
arXiv Detail & Related papers (2023-08-20T14:31:55Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - RTGNN: A Novel Approach to Model Stochastic Traffic Dynamics [9.267045415696263]
We propose a new traffic model, Recurrent Traffic Graph Neural Network (RTGNN)
RTGNN is a Markovian model and is able to infer future traffic states conditioned on the motion of the ego vehicle.
We explicitly model the hidden states of agents, "intentions," as part of the traffic state to reflect the inherent partial observability of traffic dynamics.
arXiv Detail & Related papers (2022-02-21T03:55:00Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Large-scale Analysis and Simulation of Traffic Flow using Markov Models [0.0]
A mathematically rigorous model that can be used for traffic analysis was proposed earlier by other researchers.
In this paper, a new parametrization is presented for this model by introducing the concept of two-dimensional stationary distribution.
We have run simulations in medium and large scales and both the model and estimation procedure, based on artificial and real datasets, have been proved satisfactory.
arXiv Detail & Related papers (2020-07-06T12:31:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.