Did I Faithfully Say What I Thought? Bridging the Gap Between Neural Activity and Self-Explanations in Large Language Models
- URL: http://arxiv.org/abs/2506.09277v2
- Date: Thu, 12 Jun 2025 13:30:28 GMT
- Title: Did I Faithfully Say What I Thought? Bridging the Gap Between Neural Activity and Self-Explanations in Large Language Models
- Authors: Milan Bhan, Jean-Noel Vittaut, Nicolas Chesneau, Sarath Chandar, Marie-Jeanne Lesot,
- Abstract summary: Large Language Models (LLM) have demonstrated the capability of generating free text self Natural Language Explanation (self-NLE) to justify their answers.<n>This work introduces a novel flexible framework for quantitatively measuring the faithfulness of LLM-generated self-NLE.<n>The proposed framework is versatile and provides deep insights into self-NLE faithfulness by establishing a direct connection between self-NLE and model reasoning.
- Score: 9.499055857747322
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLM) have demonstrated the capability of generating free text self Natural Language Explanation (self-NLE) to justify their answers. Despite their logical appearance, self-NLE do not necessarily reflect the LLM actual decision-making process, making such explanations unfaithful. While existing methods for measuring self-NLE faithfulness mostly rely on behavioral tests or computational block identification, none of them examines the neural activity underlying the model's reasoning. This work introduces a novel flexible framework for quantitatively measuring the faithfulness of LLM-generated self-NLE by directly comparing the latter with interpretations of the model's internal hidden states. The proposed framework is versatile and provides deep insights into self-NLE faithfulness by establishing a direct connection between self-NLE and model reasoning. This approach advances the understanding of self-NLE faithfulness and provides building blocks for generating more faithful self-NLE.
Related papers
- Self-Critique and Refinement for Faithful Natural Language Explanations [15.04835537752639]
We introduce Self-critique and Refinement for Natural Language Explanations.<n>This framework enables models to improve the faithfulness of their own explanations.<n>We show that SR-NLE significantly reduces unfaithfulness rates.
arXiv Detail & Related papers (2025-05-28T20:08:42Z) - Factual Self-Awareness in Language Models: Representation, Robustness, and Scaling [56.26834106704781]
Factual incorrectness in generated content is one of the primary concerns in ubiquitous deployment of large language models (LLMs)<n>We provide evidence supporting the presence of LLMs' internal compass that dictate the correctness of factual recall at the time of generation.<n>Scaling experiments across model sizes and training dynamics highlight that self-awareness emerges rapidly during training and peaks in intermediate layers.
arXiv Detail & Related papers (2025-05-27T16:24:02Z) - Towards Logically Consistent Language Models via Probabilistic Reasoning [14.317886666902822]
Large language models (LLMs) are a promising venue for natural language understanding and generation tasks.
LLMs are prone to generate non-factual information and to contradict themselves when prompted to reason about beliefs of the world.
We introduce a training objective that teaches a LLM to be consistent with external knowledge in the form of a set of facts and rules.
arXiv Detail & Related papers (2024-04-19T12:23:57Z) - Pride and Prejudice: LLM Amplifies Self-Bias in Self-Refinement [75.7148545929689]
Large language models (LLMs) improve their performance through self-feedback on certain tasks while degrade on others.
We formally define LLM's self-bias - the tendency to favor its own generation.
We analyze six LLMs on translation, constrained text generation, and mathematical reasoning tasks.
arXiv Detail & Related papers (2024-02-18T03:10:39Z) - Self-Alignment for Factuality: Mitigating Hallucinations in LLMs via Self-Evaluation [71.91287418249688]
Large language models (LLMs) often struggle with factual inaccuracies, even when they hold relevant knowledge.
We leverage the self-evaluation capability of an LLM to provide training signals that steer the model towards factuality.
We show that the proposed self-alignment approach substantially enhances factual accuracy over Llama family models across three key knowledge-intensive tasks.
arXiv Detail & Related papers (2024-02-14T15:52:42Z) - FaithLM: Towards Faithful Explanations for Large Language Models [67.29893340289779]
Large Language Models (LLMs) have become proficient in addressing complex tasks by leveraging their internal knowledge and reasoning capabilities.
The black-box nature of these models complicates the task of explaining their decision-making processes.
We introduce FaithLM to explain the decision of LLMs with natural language (NL) explanations.
arXiv Detail & Related papers (2024-02-07T09:09:14Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities.
Concerns persist regarding the accuracy and appropriateness of their generated content.
A contemporary methodology, self-correction, has been proposed as a remedy to these issues.
arXiv Detail & Related papers (2023-10-03T04:56:12Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Faithfulness Tests for Natural Language Explanations [87.01093277918599]
Explanations of neural models aim to reveal a model's decision-making process for its predictions.
Recent work shows that current methods giving explanations such as saliency maps or counterfactuals can be misleading.
This work explores the challenging question of evaluating the faithfulness of natural language explanations.
arXiv Detail & Related papers (2023-05-29T11:40:37Z) - Benchmarking Faithfulness: Towards Accurate Natural Language
Explanations in Vision-Language Tasks [0.0]
Natural language explanations (NLEs) promise to enable the communication of a model's decision-making in an easily intelligible way.
While current models successfully generate convincing explanations, it is an open question how well the NLEs actually represent the reasoning process of the models.
We propose three faithfulness metrics: Attribution-Similarity, NLE-Sufficiency, and NLE-Comprehensiveness.
arXiv Detail & Related papers (2023-04-03T08:24:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.