QSEA: Quantum Self-supervised Learning with Entanglement Augmentation
- URL: http://arxiv.org/abs/2506.10306v1
- Date: Thu, 12 Jun 2025 02:38:00 GMT
- Title: QSEA: Quantum Self-supervised Learning with Entanglement Augmentation
- Authors: Lingxiao Li, Xiaohui Ni, Jing Li, Sujuan Qin, Fei Gao,
- Abstract summary: Self-Supervised Learning (SSL) uses the intrinsic structure of data to extract meaningful features without relying on manual annotation.<n>Quantum SSL has become a promising alternative because it can exploit quantum states to enhance expression ability and learning efficiency.<n>This letter proposes a Quantum SSL with entanglement augmentation method (QSEA) to exploit quantum states.
- Score: 9.609797968902898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As an unsupervised feature representation paradigm, Self-Supervised Learning (SSL) uses the intrinsic structure of data to extract meaningful features without relying on manual annotation. Despite the success of SSL, there are still problems, such as limited model capacity or insufficient representation ability. Quantum SSL has become a promising alternative because it can exploit quantum states to enhance expression ability and learning efficiency. This letter proposes a Quantum SSL with entanglement augmentation method (QSEA). Different from existing Quantum SSLs, QSEA introduces an entanglement-based sample generation scheme and a fidelity-driven quantum loss function. Specifically, QSEA constructs augmented samples by entangling an auxiliary qubit with the raw state and applying parameterized unitary transformations. The loss function is defined using quantum fidelity, quantifying similarity between quantum representations and effectively capturing sample relations. Experimental results show that QSEA outperforms existing quantum self-supervised methods on multiple benchmarks and shows stronger stability in decorrelation noise environments. This framework lays the theoretical and practical foundation for quantum learning systems and advances the development of quantum machine learning in SSL.
Related papers
- Sporadic Federated Learning Approach in Quantum Environment to Tackle Quantum Noise [1.2026018242953707]
SpoQFL dynamically adjusts training strategies based on noise fluctuations.<n>Experiments on real-world datasets demonstrate that SpoQFL significantly outperforms conventional QFL approaches.
arXiv Detail & Related papers (2025-07-15T20:30:11Z) - VQC-MLPNet: An Unconventional Hybrid Quantum-Classical Architecture for Scalable and Robust Quantum Machine Learning [60.996803677584424]
Variational Quantum Circuits (VQCs) offer a novel pathway for quantum machine learning.<n>Their practical application is hindered by inherent limitations such as constrained linear expressivity, optimization challenges, and acute sensitivity to quantum hardware noise.<n>This work introduces VQC-MLPNet, a scalable and robust hybrid quantum-classical architecture designed to overcome these obstacles.
arXiv Detail & Related papers (2025-06-12T01:38:15Z) - Quantum Knowledge Distillation for Large Language Models [10.023534560183919]
We propose a Quantum knowledge Distillation model for Large Language Models (QD-LLM)<n>In classical simulation, QD-LLM outperforms several mainstream distillation methods on multiple text classification tasks.<n>We deploy the obtained circuits on the Baihua superconducting quantum processor via the Quafu platform to assess practical feasibility.
arXiv Detail & Related papers (2025-05-19T14:56:24Z) - A learning agent-based approach to the characterization of open quantum systems [0.0]
We introduce the open Quantum Model Learning Agent (oQMLA) framework to account for Markovian noise through the Liouvillian formalism.<n>By simultaneously learning the Hamiltonian and jump operators, oQMLA independently captures both the coherent and incoherent dynamics of a system.<n>We validate our implementation in simulated scenarios of increasing complexity, demonstrating its robustness to hardware-induced measurement errors.
arXiv Detail & Related papers (2025-01-09T16:25:17Z) - Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection [3.9554540293311864]
Quantum Machine Learning has shown promise in diverse applications such as environmental monitoring, healthcare diagnostics, and financial modeling.<n>One critical challenge is handling imbalanced datasets, where rare events are often misclassified due to skewed data distributions.<n>This paper introduces a Bayesian approach utilizing QBNs to classify satellite-derived imbalanced datasets, distinguishing oil-spill'' from non-spill'' regions.
arXiv Detail & Related papers (2024-12-24T15:44:26Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - QUSL: Quantum Unsupervised Image Similarity Learning with Enhanced Performance [14.288836269941207]
QUSL uses similarity triplets for unsupervised learning, generating positive samples by perturbing anchor images.
It achieves over 50% reduction in critical quantum resource utilization.
While using fewer quantum resources, QUSL shows potential for large-scale unsupervised tasks.
arXiv Detail & Related papers (2024-04-02T15:17:09Z) - GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
Grover-inspired Quantum Hard Attention Mechanism (GQHAM) is proposed.
GQHAN adeptly surmounts the non-differentiability hurdle, surpassing the efficacy of extant quantum soft self-attention mechanisms.
The proposal of GQHAN lays the foundation for future quantum computers to process large-scale data, and promotes the development of quantum computer vision.
arXiv Detail & Related papers (2024-01-25T11:11:16Z) - Unifying (Quantum) Statistical and Parametrized (Quantum) Algorithms [65.268245109828]
We take inspiration from Kearns' SQ oracle and Valiant's weak evaluation oracle.
We introduce an extensive yet intuitive framework that yields unconditional lower bounds for learning from evaluation queries.
arXiv Detail & Related papers (2023-10-26T18:23:21Z) - Ansatz-Agnostic Exponential Resource Saving in Variational Quantum
Algorithms Using Shallow Shadows [5.618657159109373]
Variational Quantum Algorithms (VQA) have been identified as a promising candidate for the demonstration of near-term quantum advantage.
We present a protocol based on shallow shadows that achieves similar levels of savings for almost any shallow ansatz studied in the literature.
We show that two important applications in quantum information for which VQAs can be a powerful option, namely variational quantum state preparation and variational quantum circuit synthesis.
arXiv Detail & Related papers (2023-09-09T11:00:39Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantum variational learning for entanglement witnessing [0.0]
This work focuses on the potential implementation of quantum algorithms allowing to properly classify quantum states defined over a single register of $n$ qubits.
We exploit the notion of "entanglement witness", i.e., an operator whose expectation values allow to identify certain specific states as entangled.
We made use of Quantum Neural Networks (QNNs) in order to successfully learn how to reproduce the action of an entanglement witness.
arXiv Detail & Related papers (2022-05-20T20:14:28Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.