論文の概要: Beyond Sin-Squared Error: Linear-Time Entrywise Uncertainty Quantification for Streaming PCA
- arxiv url: http://arxiv.org/abs/2506.12655v1
- Date: Sat, 14 Jun 2025 22:50:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:46.608968
- Title: Beyond Sin-Squared Error: Linear-Time Entrywise Uncertainty Quantification for Streaming PCA
- Title(参考訳): 正方形誤差を超えて:PCAストリーミングにおける線形時間不確かさの定量化
- Authors: Syamantak Kumar, Shourya Pandey, Purnamrita Sarkar,
- Abstract要約: Ojaのアルゴリズムを用いたストリーミング主成分分析(PCA)のための新しい統計的推論フレームワークを提案する。
最適誤差率と対数因子との一致する推定ベクトルの要素に対して、鋭いベルンシュタイン型濃度を導出する。
座標偏差を効率的に推定するために,証明可能な一貫した部分サンプリングアルゴリズムを導入する。
- 参考スコア(独自算出の注目度): 5.749787074942513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel statistical inference framework for streaming principal component analysis (PCA) using Oja's algorithm, enabling the construction of confidence intervals for individual entries of the estimated eigenvector. Most existing works on streaming PCA focus on providing sharp sin-squared error guarantees. Recently, there has been some interest in uncertainty quantification for the sin-squared error. However, uncertainty quantification or sharp error guarantees for entries of the estimated eigenvector in the streaming setting remains largely unexplored. We derive a sharp Bernstein-type concentration bound for elements of the estimated vector matching the optimal error rate up to logarithmic factors. We also establish a Central Limit Theorem for a suitably centered and scaled subset of the entries. To efficiently estimate the coordinate-wise variance, we introduce a provably consistent subsampling algorithm that leverages the median-of-means approach, empirically achieving similar accuracy to multiplier bootstrap methods while being significantly more computationally efficient. Numerical experiments demonstrate its effectiveness in providing reliable uncertainty estimates with a fraction of the computational cost of existing methods.
- Abstract(参考訳): 推定固有ベクトルの個々のエントリに対する信頼区間の構築を可能にするOjaのアルゴリズムを用いて,ストリーミング主成分分析(PCA)のための新しい統計的推論フレームワークを提案する。
既存のほとんどの作業はストリーミングPCAで、鋭い罪の2乗エラー保証を提供することに重点を置いている。
近年、罪二乗誤差の不確実性定量化への関心が高まっている。
しかし、ストリーミング環境における推定固有ベクトルのエントリに対する不確かさの定量化や鋭いエラー保証は、ほとんど未解明のままである。
最適誤差率と対数因子との一致する推定ベクトルの要素に対して、鋭いベルンシュタイン型濃度を導出する。
また、エントリの適切な中心化とスケール化のサブセットに対して、中央極限定理を定めます。
座標の偏差を効率よく推定するために,平均値の中央値を用いた確率的に一貫したサブサンプリングアルゴリズムを導入し,乗算器ブートストラップ法と類似の精度を実証的に達成し,計算効率が著しく向上した。
数値実験は、既存の手法の計算コストのごく一部で信頼性の高い不確実性推定を提供することの有効性を実証する。
関連論文リスト
- Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget [55.938644481736446]
本稿では,誤差確率の指数的減衰を保証し,最適な腕識別のための新しいアルゴリズムを提案する。
我々は,複雑性のレベルが異なる様々な問題インスタンスに対する包括的経験的評価を通じて,アルゴリズムの有効性を検証する。
論文 参考訳(メタデータ) (2025-06-03T02:56:26Z) - Semiparametric conformal prediction [79.6147286161434]
ベクトル値の非整合性スコアの結合相関構造を考慮した共形予測セットを構築する。
スコアの累積分布関数(CDF)を柔軟に推定する。
提案手法は,現実の回帰問題に対して,所望のカバレッジと競争効率をもたらす。
論文 参考訳(メタデータ) (2024-11-04T14:29:02Z) - Entrywise Inference for Missing Panel Data: A Simple and Instance-Optimal Approach [27.301741710016223]
停滞した採用によって引き起こされたパネルデータの欠落データバージョンに関連する推論的疑問を考察する。
我々は、予め特定されたカバレッジでエントリワイドな信頼区間を構築するためのデータ駆動方式を開発し、分析する。
我々は、欠落したエントリを推定する際に、そのエラーに非漸近的かつ高い確率境界を証明した。
論文 参考訳(メタデータ) (2024-01-24T18:58:18Z) - High Confidence Level Inference is Almost Free using Parallel Stochastic
Optimization [16.38026811561888]
本稿では,高効率計算と高速収束による信頼区間構築に焦点をあてた新しい推論手法を提案する。
提案手法は,推定値の標準的な更新を超える最小限の計算量とメモリを必要とするため,推論処理はほとんどコストがかからない。
論文 参考訳(メタデータ) (2024-01-17T17:11:45Z) - Robust Non-parametric Knowledge-based Diffusion Least Mean Squares over
Adaptive Networks [12.266804067030455]
提案アルゴリズムは, 協調推定器群における未知パラメータベクトルのロバストな推定に導かれる。
その結果,異なるノイズの種類が存在する場合,提案アルゴリズムのロバスト性を示す。
論文 参考訳(メタデータ) (2023-12-03T06:18:59Z) - Equation Discovery with Bayesian Spike-and-Slab Priors and Efficient Kernels [57.46832672991433]
ケルネル学習とBayesian Spike-and-Slab pres (KBASS)に基づく新しい方程式探索法を提案する。
カーネルレグレッションを用いてターゲット関数を推定する。これはフレキシブルで表現力があり、データ空間やノイズに対してより堅牢である。
我々は,効率的な後部推論と関数推定のための予測伝搬予測最大化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-10-09T03:55:09Z) - Robust leave-one-out cross-validation for high-dimensional Bayesian
models [0.0]
レリーブ・ワン・アウト・クロスバリデーション (LOO-CV) は、アウト・オブ・サンプル予測精度を推定するための一般的な手法である。
そこで本研究では,LOO-CV基準を計算するための新しい混合推定器を提案し,解析する。
提案手法は古典的手法の単純さと計算的利便性を保ちながら, 得られた推定値の有限分散を保証している。
論文 参考訳(メタデータ) (2022-09-19T17:14:52Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator [95.71091446753414]
最寄りの$gamma$-divergence推定器をデータ差分尺度として用いることを提案する。
本手法は既存の不一致対策よりも高いロバスト性を実現する。
論文 参考訳(メタデータ) (2020-06-13T06:09:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。