論文の概要: Exploring the Potential of Metacognitive Support Agents for Human-AI Co-Creation
- arxiv url: http://arxiv.org/abs/2506.12879v1
- Date: Sun, 15 Jun 2025 15:09:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:47.081117
- Title: Exploring the Potential of Metacognitive Support Agents for Human-AI Co-Creation
- Title(参考訳): メタ認知支援エージェントの可能性を探る
- Authors: Frederic Gmeiner, Kaitao Luo, Ye Wang, Kenneth Holstein, Nikolas Martelaro,
- Abstract要約: 我々は、デザイナーがGenAIとよりよく協力するのを支援する新しいメタ認知支援エージェントを構想する。
メカニカルデザイナ20名を対象に,オズの魔法使いによる探索的プロトタイピングを行った。
エージェント支援のユーザは,サポート戦略の異なる非サポートのユーザよりも実現可能な設計を作成した。
- 参考スコア(独自算出の注目度): 15.100530378569866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the potential of generative AI (GenAI) design tools to enhance design processes, professionals often struggle to integrate AI into their workflows. Fundamental cognitive challenges include the need to specify all design criteria as distinct parameters upfront (intent formulation) and designers' reduced cognitive involvement in the design process due to cognitive offloading, which can lead to insufficient problem exploration, underspecification, and limited ability to evaluate outcomes. Motivated by these challenges, we envision novel metacognitive support agents that assist designers in working more reflectively with GenAI. To explore this vision, we conducted exploratory prototyping through a Wizard of Oz elicitation study with 20 mechanical designers probing multiple metacognitive support strategies. We found that agent-supported users created more feasible designs than non-supported users, with differing impacts between support strategies. Based on these findings, we discuss opportunities and tradeoffs of metacognitive support agents and considerations for future AI-based design tools.
- Abstract(参考訳): デザインプロセスを強化するための生成AI(GenAI)設計ツールの可能性にもかかわらず、プロフェッショナルはワークフローにAIを統合するのに苦労することが多い。
基本的な認知的課題には、すべての設計基準を前もって異なるパラメータ(意図的な定式化)として指定する必要があることや、認知的オフロードによる設計プロセスへの認知的関与の減少が問題探索の不足、過小評価、結果を評価する能力の制限につながる可能性がある。
これらの課題に感化されて、我々は、デザイナーがGenAIとよりよく協力するのを支援する新しいメタ認知支援エージェントを構想する。
このビジョンを探求するために、我々は20人の機械設計者によるウィザード・オブ・オズの誘引研究を通して、複数のメタ認知支援戦略を探索するプロトタイピングを行った。
エージェント支援のユーザは,サポート戦略の異なる非サポートのユーザよりも実現可能な設計を作成した。
これらの知見に基づき、メタ認知支援エージェントの機会とトレードオフと、将来のAIベースのデザインツールの検討について論じる。
関連論文リスト
- Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training [86.70255651945602]
我々はReinforcecing Cognitive Experts(RICE)と呼ばれる新しい推論時ステアリング手法を導入する。
RICEは、追加のトレーニングや複雑化なしに推論のパフォーマンスを改善することを目的としている。
先行する MoE ベースの LRM を用いた経験的評価は、推論精度、認知効率、ドメイン間の一般化において顕著で一貫した改善を示す。
論文 参考訳(メタデータ) (2025-05-20T17:59:16Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
人々の行動、仕事、能力、類似性、または人間性を模倣するように設計されたAIシステムが増加している。
このようなAIシステムの研究、設計、展開、可用性は、幅広い法的、倫理的、その他の社会的影響に対する懸念を喚起している。
論文 参考訳(メタデータ) (2025-03-04T03:55:38Z) - The Design Space of Recent AI-assisted Research Tools for Ideation, Sensemaking, and Scientific Creativity [2.0558118968162673]
ジェネレーティブAI(GenAI)ツールは、学術研究のような知識労働における自動化の範囲と能力を拡張している。
認知とプロセスの合理化を約束する一方で、AI支援の研究ツールは自動化バイアスを高め、批判的思考を妨げる可能性がある。
論文 参考訳(メタデータ) (2025-02-22T16:42:11Z) - Empowering Clients: Transformation of Design Processes Due to Generative AI [1.4003044924094596]
この研究は、AIがアイデアの迅速な視覚化を通じて、クライアントが設計プロセスに参加することを可能にすることによって、アイデアのフェーズを破壊できることを明らかにしている。
私たちの研究は、AIが設計に対して貴重なフィードバックを提供することができる一方で、そのような設計を生成できない可能性があることを示しています。
アーキテクチャの解釈的主権と,AIが設計プロセスのオーサシップをますます引き継ぐにつれて,意味とアイデンティティの喪失について,アーキテクトの間に不確実性があることも明らかになった。
論文 参考訳(メタデータ) (2024-11-22T16:48:15Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Responding to Generative AI Technologies with Research-through-Design: The Ryelands AI Lab as an Exploratory Study [6.028558240668647]
我々は小学校と提携して、生成的AI技術と相互作用する学生を中心とした建設学カリキュラムを開発する。
本稿では,カリキュラムと学習教材の設計とアウトプットの詳細な説明を行い,その反抗的かつ長期にわたるハンズオンのアプローチが,学生の実践的かつ重要な能力の共同開発に繋がったことを中心的に見出した。
論文 参考訳(メタデータ) (2024-05-07T21:34:10Z) - Prototyping with Prompts: Emerging Approaches and Challenges in Generative AI Design for Collaborative Software Teams [2.237039275844699]
生成型AIモデルは、人間のタスクに統合され、表現力のあるコンテンツの制作が可能になっている。
従来のヒューマンAI設計手法とは異なり、生成能力を設計するための新しいアプローチは、迅速なエンジニアリング戦略に重点を置いている。
我々の発見は、マルチステークホルダーチーム間のAIシステムのプロトタイピングにおける新たなプラクティスと役割シフトを浮き彫りにしている。
論文 参考訳(メタデータ) (2024-02-27T17:56:10Z) - Design Space Exploration and Explanation via Conditional Variational
Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges [52.77024349608834]
本稿では,条件付き変分オートエンコーダ(CVAE)による人間設計者向上のための性能駆動型設計探索フレームワークを提案する。
CVAEはスイスの歩行者橋の合成例18万件で訓練されている。
論文 参考訳(メタデータ) (2022-11-29T17:28:31Z) - Investigating Positive and Negative Qualities of Human-in-the-Loop
Optimization for Designing Interaction Techniques [55.492211642128446]
設計者は、与えられた目的の集合を最大化する設計パラメータの組み合わせを見つけるよう求められる設計最適化タスクに苦労すると言われている。
モデルベースの計算設計アルゴリズムは、設計中に設計例を生成することでデザイナを支援する。
一方、補助のためのブラックボックスメソッドは、あらゆる設計問題に対処できる。
論文 参考訳(メタデータ) (2022-04-15T20:40:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。