論文の概要: Responding to Generative AI Technologies with Research-through-Design: The Ryelands AI Lab as an Exploratory Study
- arxiv url: http://arxiv.org/abs/2405.04677v1
- Date: Tue, 7 May 2024 21:34:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:45:07.025706
- Title: Responding to Generative AI Technologies with Research-through-Design: The Ryelands AI Lab as an Exploratory Study
- Title(参考訳): リサーチスルー設計によるジェネレーティブAI技術への対応:探査研究としてのライランズAIラボ
- Authors: Jesse Josua Benjamin, Joseph Lindley, Elizabeth Edwards, Elisa Rubegni, Tim Korjakow, David Grist, Rhiannon Sharkey,
- Abstract要約: 我々は小学校と提携して、生成的AI技術と相互作用する学生を中心とした建設学カリキュラムを開発する。
本稿では,カリキュラムと学習教材の設計とアウトプットの詳細な説明を行い,その反抗的かつ長期にわたるハンズオンのアプローチが,学生の実践的かつ重要な能力の共同開発に繋がったことを中心的に見出した。
- 参考スコア(独自算出の注目度): 6.028558240668647
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative AI technologies demand new practical and critical competencies, which call on design to respond to and foster these. We present an exploratory study guided by Research-through-Design, in which we partnered with a primary school to develop a constructionist curriculum centered on students interacting with a generative AI technology. We provide a detailed account of the design of and outputs from the curriculum and learning materials, finding centrally that the reflexive and prolonged `hands-on' approach led to a co-development of students' practical and critical competencies. From the study, we contribute guidance for designing constructionist approaches to generative AI technology education; further arguing to do so with `critical responsivity.' We then discuss how HCI researchers may leverage constructionist strategies in designing interactions with generative AI technologies; and suggest that Research-through-Design can play an important role as a `rapid response methodology' capable of reacting to fast-evolving, disruptive technologies such as generative AI.
- Abstract(参考訳): ジェネレーティブなAI技術は、新しい実用的で重要な能力を必要とし、それに反応し、育むデザインを要求する。
そこで,我々は小学校と共同で,生成型AI技術と相互作用する学生を中心とした建設学カリキュラムを開発することを目的として,Research-through-Designによって指導された探索的研究を行った。
本稿では,カリキュラムと学習教材の設計とアウトプットの詳細な説明を行い,その反抗的かつ長期にわたる「ハンズオン」アプローチが,学生の実践的かつ批判的な能力の共同開発に繋がることを示した。
本研究は,生産型AI技術教育における建設主義的アプローチの設計指導に貢献し,さらに「批判的責任」でこれを主張する。
次に、HCI研究者は、生成AI技術とのインタラクションを設計する上で、構成主義的戦略をどのように活用するかについて議論し、生成AIのような急速に進化する破壊的技術に反応できる「ラピッド・レスポンス・方法論」として、リサーチ・スルー・デザインが重要な役割を果たすことを示唆する。
関連論文リスト
- Augmenting the Author: Exploring the Potential of AI Collaboration in Academic Writing [25.572926673827165]
このケーススタディは、学術的な仕事において、責任と効果的なAI統合を保証するためのAIの限界を認識し、設計、出力分析、そして認識することの重要性を強調します。
この論文は、効果的なプロンプト戦略を探求し、Gen AIモデルの比較分析を提供することにより、ヒューマン・コンピュータインタラクションの分野に貢献する。
論文 参考訳(メタデータ) (2024-04-23T19:06:39Z) - Grasping AI: experiential exercises for designers [8.95562850825636]
本稿では,AIシステムにおけるインタラクション・アベイランス,ユニークなリレーショナル可能性,より広範な社会的影響を探求し,考察する手法について検討する。
比喩や制定に関する演習は、トレーニングや学習、プライバシーと同意、自律性、エージェンシーをより具体的になる。
論文 参考訳(メタデータ) (2023-10-02T15:34:08Z) - The Participatory Turn in AI Design: Theoretical Foundations and the
Current State of Practice [64.29355073494125]
本稿は、既存の理論文献を合成して、AI設計における「参加的転換」を掘り下げることを目的としている。
我々は、最近発表された研究および12人のAI研究者および実践者に対する半構造化インタビューの分析に基づいて、AI設計における参加実践の現状に関する実証的な知見を述べる。
論文 参考訳(メタデータ) (2023-10-02T05:30:42Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Designing an AI-Driven Talent Intelligence Solution: Exploring Big Data
to extend the TOE Framework [0.0]
本研究の目的は、人材管理問題に対処するAI指向のアーティファクトを開発するための新しい要件を特定することである。
構造化機械学習技術を用いて実験的な研究を行うための設計科学手法が採用されている。
論文 参考訳(メタデータ) (2022-07-25T10:42:50Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
本稿では、既存の文献の参加と現在の実践の実証分析を通じて、AI設計における「参加的転換」を掘り下げることを目的としている。
本稿では,本論文の文献合成と実証研究に基づいて,AI設計への参加的アプローチを解析するための概念的枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-01T17:57:04Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Competency Model Approach to AI Literacy: Research-based Path from
Initial Framework to Model [0.0]
AIリテラシーの研究は、これらのスキルを開発するための効果的で実用的なプラットフォームにつながる可能性がある。
我々は、AI教育の実用的で有用なツールとして、AIリテラシーを開発するための経路を提案し、提唱する。
論文 参考訳(メタデータ) (2021-08-12T15:42:32Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Artificial Intelligence Technologies in Education: Benefits, Challenges
and Strategies of Implementation [8.54335661175611]
教育分野における人工知能導入のメリットと課題を特定した。
私たちはまた、学習者と教育者のための最新のAI技術についてもレビューしました。
我々は,5段階の汎用プロセスで記述された戦略実装モデルと,対応する構成ガイドを開発した。
論文 参考訳(メタデータ) (2021-02-11T11:09:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。