論文の概要: SpaceTrack-TimeSeries: Time Series Dataset towards Satellite Orbit Analysis
- arxiv url: http://arxiv.org/abs/2506.13034v1
- Date: Mon, 16 Jun 2025 01:57:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:47.308827
- Title: SpaceTrack-TimeSeries: Time Series Dataset towards Satellite Orbit Analysis
- Title(参考訳): SpaceTrack-TimeSeries:衛星軌道解析に向けた時系列データセット
- Authors: Zhixin Guo, Qi Shi, Xiaofan Xu, Sixiang Shan, Limin Qin, Linqiang Ge, Rui Zhang, Ya Dai, Hua Zhu, Guowei Jiang,
- Abstract要約: 本研究は、Starlink衛星からの操作行動の代表的なデータセットを収集し、キュレートする。
このデータセットは、TLE(Two-Line Element)カタログデータと対応する高精度なエフェメリスデータを統合することで、より現実的で多次元的な宇宙物体の挙動モデリングを可能にする。
これは、機動検出法の実践的な展開と、ますます混雑する軌道環境における衝突リスクの評価に関する貴重な洞察を提供する。
- 参考スコア(独自算出の注目度): 7.471495336112591
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the rapid advancement of aerospace technology and the large-scale deployment of low Earth orbit (LEO) satellite constellations, the challenges facing astronomical observations and deep space exploration have become increasingly pronounced. As a result, the demand for high-precision orbital data on space objects-along with comprehensive analyses of satellite positioning, constellation configurations, and deep space satellite dynamics-has grown more urgent. However, there remains a notable lack of publicly accessible, real-world datasets to support research in areas such as space object maneuver behavior prediction and collision risk assessment. This study seeks to address this gap by collecting and curating a representative dataset of maneuvering behavior from Starlink satellites. The dataset integrates Two-Line Element (TLE) catalog data with corresponding high-precision ephemeris data, thereby enabling a more realistic and multidimensional modeling of space object behavior. It provides valuable insights into practical deployment of maneuver detection methods and the evaluation of collision risks in increasingly congested orbital environments.
- Abstract(参考訳): 航空宇宙技術の急速な進歩と低軌道(LEO)衛星の大規模展開により、天文学的な観測や深宇宙探査に直面する課題がますます顕著になっている。
その結果、衛星の位置、星座構成、深宇宙衛星のダイナミクスに関する包括的な分析とともに、宇宙物体の高精度な軌道データの需要が高まった。
しかし、宇宙物体の操作行動予測や衝突リスク評価などの分野の研究を支援するために、一般にアクセス可能な実世界のデータセットが不足している。
本研究は、スターリンク衛星からの操作行動の代表的なデータセットを収集し、キュレーションすることで、このギャップに対処することを目的とする。
このデータセットは、TLE(Two-Line Element)カタログデータと対応する高精度なエフェメリスデータを統合することで、より現実的で多次元的な宇宙物体の挙動モデリングを可能にする。
これは、機動検出法の実践的な展開と、ますます密集した軌道環境における衝突リスクの評価に関する貴重な洞察を提供する。
関連論文リスト
- High Performance Space Debris Tracking in Complex Skylight Backgrounds with a Large-Scale Dataset [48.32788509877459]
高精度なデブリ追跡を実現するために,深層学習に基づく空間デブリ追跡ネットワーク(SDT-Net)を提案する。
SDT-Netはデブリの特徴を効果的に表現し、エンドツーエンドのモデル学習の効率性と安定性を高める。
データセットとコードはまもなくリリースされます。
論文 参考訳(メタデータ) (2025-06-03T08:30:25Z) - An Edge AI Solution for Space Object Detection [29.817805350971366]
宇宙物体検出タスクのための深層学習に基づく視覚センシングに基づくエッジAIソリューションを提案する。
我々は,これらのモデルの性能を,様々な現実的な空間オブジェクト検出シナリオで評価する。
論文 参考訳(メタデータ) (2025-05-08T14:51:19Z) - Reconstructing Satellites in 3D from Amateur Telescope Images [44.20773507571372]
本稿では,ハイブリッド画像前処理パイプラインを統合することで,障害を克服する新しい計算イメージングフレームワークを提案する。
我々は,中国の江東宇宙ステーションと国際宇宙ステーションの合成衛星データセットとオンスキー観測の両方にアプローチを検証した。
我々のフレームワークは地球からの高忠実度3D衛星監視を可能にし、宇宙状況認識のためのコスト効率の良い代替手段を提供する。
論文 参考訳(メタデータ) (2024-04-29T03:13:09Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - SpaceYOLO: A Human-Inspired Model for Real-time, On-board Spacecraft
Feature Detection [0.0]
衝突の危険箇所を特定するためには、リアルタイムで自動的な宇宙船の特徴認識が必要である。
新しいアルゴリズムSpaceYOLOは、最先端のオブジェクト検出器YOLOv5を、人間にインスパイアされた意思決定プロセスに基づいて、別個のニューラルネットワークで融合する。
SpaceYOLOの自律型宇宙船検出の性能は、ハードウェア・イン・ザ・ループ実験において通常のYOLOv5と比較される。
論文 参考訳(メタデータ) (2023-02-02T02:11:39Z) - SPARK: SPAcecraft Recognition leveraging Knowledge of Space Environment [10.068428438297563]
本稿では、SPARKデータセットを新しいユニークな空間オブジェクトマルチモーダルイメージデータセットとして提案する。
SPARKデータセットは、現実的な宇宙シミュレーション環境下で生成される。
1モードあたり約150kの画像、RGBと深さ、宇宙船とデブリの11のクラスを提供する。
論文 参考訳(メタデータ) (2021-04-13T07:16:55Z) - Spacecraft Collision Risk Assessment with Probabilistic Programming [0.0]
長さ10cmを超える34,000体以上が地球を周回していることが知られている。
そのうち、活動的な衛星はわずかの割合しかなく、残りの人口は死んだ衛星、ロケット本体、および運用中の宇宙船に衝突の脅威を与える破片でできています。
結合データメッセージを合成生成するための新しい物理ベースの確率的生成モデルを構築する。
論文 参考訳(メタデータ) (2020-12-18T14:26:08Z) - Occupancy Anticipation for Efficient Exploration and Navigation [97.17517060585875]
そこで我々は,エージェントが自我中心のRGB-D観測を用いて,その占有状態を可視領域を超えて推定する,占有予測を提案する。
エゴセントリックなビューとトップダウンマップの両方でコンテキストを活用することで、私たちのモデルは環境のより広いマップを予測できます。
われわれのアプローチは、2020 Habitat PointNav Challengeの優勝だ。
論文 参考訳(メタデータ) (2020-08-21T03:16:51Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
低軌道軌道(LEO)衛星のメガコンステレーションは、低レイテンシで長距離通信を可能にする可能性がある。
軌道上の星座から選択されたLEO衛星を用いて、2つの遠距離地上端末間でパケットを転送する問題について検討する。
エンドツーエンドのデータレートを最大化するためには、衛星アソシエーションとHAPロケーションを最適化する必要がある。
本稿では, 深部強化学習(DRL)と新しい動作次元低減技術を用いてこの問題に対処する。
論文 参考訳(メタデータ) (2020-05-26T05:39:27Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。