Pro-AD: Learning Comprehensive Prototypes with Prototype-based Constraint for Multi-class Unsupervised Anomaly Detection
- URL: http://arxiv.org/abs/2506.13097v3
- Date: Tue, 24 Jun 2025 02:59:10 GMT
- Title: Pro-AD: Learning Comprehensive Prototypes with Prototype-based Constraint for Multi-class Unsupervised Anomaly Detection
- Authors: Ziqing Zhou, Yurui Pan, Lidong Wang, Wenbing Zhu, Mingmin Chi, Dong Wu, Bo Peng,
- Abstract summary: Prototype-based reconstruction methods for unsupervised anomaly detection utilize a limited set of learnable prototypes.<n>We propose Pro-AD to address these issues and fully utilize the prototypes to boost the performance of anomaly detection.<n>Our Pro-AD achieve state-of-the-art performance, highlighting its superior robustness and practical effectiveness for Multi-class Unsupervised Anomaly Detection task.
- Score: 8.358250148845572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prototype-based reconstruction methods for unsupervised anomaly detection utilize a limited set of learnable prototypes which only aggregates insufficient normal information, resulting in undesirable reconstruction. However, increasing the number of prototypes may lead to anomalies being well reconstructed through the attention mechanism, which we refer to as the "Soft Identity Mapping" problem. In this paper, we propose Pro-AD to address these issues and fully utilize the prototypes to boost the performance of anomaly detection. Specifically, we first introduce an expanded set of learnable prototypes to provide sufficient capacity for semantic information. Then we employ a Dynamic Bidirectional Decoder which integrates the process of the normal information aggregation and the target feature reconstruction via prototypes, with the aim of allowing the prototypes to aggregate more comprehensive normal semantic information from different levels of the image features and the target feature reconstruction to not only utilize its contextual information but also dynamically leverage the learned comprehensive prototypes. Additionally, to prevent the anomalies from being well reconstructed using sufficient semantic information through the attention mechanism, Pro-AD introduces a Prototype-based Constraint that applied within the target feature reconstruction process of the decoder, which further improves the performance of our approach. Extensive experiments on multiple challenging benchmarks demonstrate that our Pro-AD achieve state-of-the-art performance, highlighting its superior robustness and practical effectiveness for Multi-class Unsupervised Anomaly Detection task.
Related papers
- FastRef:Fast Prototype Refinement for Few-Shot Industrial Anomaly Detection [18.487111110151115]
Few-shot industrial anomaly detection (FS-IAD) presents a critical challenge for practical automated inspection systems.<n>We propose FastRef, a novel and efficient prototype refinement framework for FS-IAD.<n>For comprehensive evaluation, we integrate FastRef with three competitive prototype-based FS-IAD methods: PatchCore, FastRecon, WinCLIP, and AnomalyDINO.
arXiv Detail & Related papers (2025-06-26T15:46:28Z) - Efficient Prototype Consistency Learning in Medical Image Segmentation via Joint Uncertainty and Data Augmentation [32.47805202531351]
Prototype learning has emerged in semi-supervised medical image segmentation.<n>We propose an efficient prototype consistency learning via joint uncertainty quantification and data augmentation.<n>Our framework is superior to previous state-of-the-art approaches.
arXiv Detail & Related papers (2025-05-22T06:25:32Z) - Demystifying Catastrophic Forgetting in Two-Stage Incremental Object Detector [42.40881712297689]
Catastrophic forgetting is predominantly localized to the RoI Head.<n>NSGP-RePRE mitigates forgetting via replay of two types of prototypes.<n>NSGP-RePRE achieves state-of-the-art performance on the Pascal VOC and MS COCO datasets.
arXiv Detail & Related papers (2025-02-08T12:10:02Z) - Object Style Diffusion for Generalized Object Detection in Urban Scene [69.04189353993907]
We introduce a novel single-domain object detection generalization method, named GoDiff.<n>By integrating pseudo-target domain data with source domain data, we diversify the training dataset.<n> Experimental results demonstrate that our method not only enhances the generalization ability of existing detectors but also functions as a plug-and-play enhancement for other single-domain generalization methods.
arXiv Detail & Related papers (2024-12-18T13:03:00Z) - Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection [58.87142367781417]
A naively trained detector tends to favor overfitting to the limited and monotonous fake patterns, causing the feature space to become highly constrained and low-ranked.<n>One potential remedy is incorporating the pre-trained knowledge within the vision foundation models to expand the feature space.<n>By freezing the principal components and adapting only the remained components, we preserve the pre-trained knowledge while learning fake patterns.
arXiv Detail & Related papers (2024-11-23T19:10:32Z) - Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Learning Transferable Conceptual Prototypes for Interpretable
Unsupervised Domain Adaptation [79.22678026708134]
In this paper, we propose an inherently interpretable method, named Transferable Prototype Learning ( TCPL)
To achieve this goal, we design a hierarchically prototypical module that transfers categorical basic concepts from the source domain to the target domain and learns domain-shared prototypes for explaining the underlying reasoning process.
Comprehensive experiments show that the proposed method can not only provide effective and intuitive explanations but also outperform previous state-of-the-arts.
arXiv Detail & Related papers (2023-10-12T06:36:41Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
We develop a unified model to detect anomalies from objects belonging to multiple classes when only normal data is accessible.
We first explore the generative-based approach and investigate latent diffusion models for reconstruction.
We introduce a feature editing strategy that modifies the input feature space of the diffusion model to further alleviate identity shortcuts''
arXiv Detail & Related papers (2023-07-16T14:41:22Z) - ProtoDiff: Learning to Learn Prototypical Networks by Task-Guided
Diffusion [44.805452233966534]
Prototype-based meta-learning has emerged as a powerful technique for addressing few-shot learning challenges.
We introduce ProtoDiff, a framework that gradually generates task-specific prototypes from random noise.
We conduct thorough ablation studies to demonstrate its ability to accurately capture the underlying prototype distribution.
arXiv Detail & Related papers (2023-06-26T15:26:24Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold.
We adapt a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples.
We achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
arXiv Detail & Related papers (2022-06-23T14:16:30Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
This paper addresses anomaly detection problem for videosurveillance.
Due to the inherent rarity and heterogeneity of abnormal events, the problem is viewed as a normality modeling strategy.
Our model learns object-centric normal patterns without seeing anomalous samples during training.
arXiv Detail & Related papers (2022-03-07T19:28:39Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.