論文の概要: Feedforward Ordering in Neural Connectomes via Feedback Arc Minimization
- arxiv url: http://arxiv.org/abs/2506.13799v1
- Date: Fri, 13 Jun 2025 03:03:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.149194
- Title: Feedforward Ordering in Neural Connectomes via Feedback Arc Minimization
- Title(参考訳): フィードバックアーク最小化によるニューラルコネクトームのフィードフォワード順序付け
- Authors: Soroush Vahidi,
- Abstract要約: 大規模重み付き有向グラフのフィードバック弧を最小化するためのスケーラブルなアルゴリズム群を提案する。
本手法では, 強結合成分に基づくグリーディーズ, ゲイン・アウェア・ローカル・リファインメント, 大域的構造解析を統合した。
すべてのアルゴリズムはPythonで効率的に実装され、Google Colab Pro+上でクラウドベースの実行を使用して検証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a suite of scalable algorithms for minimizing feedback arcs in large-scale weighted directed graphs, with the goal of revealing biologically meaningful feedforward structure in neural connectomes. Using the FlyWire Connectome Challenge dataset, we demonstrate the effectiveness of our ranking strategies in maximizing the total weight of forward-pointing edges. Our methods integrate greedy heuristics, gain-aware local refinements, and global structural analysis based on strongly connected components. Experiments show that our best solution improves the forward edge weight over previous top-performing methods. All algorithms are implemented efficiently in Python and validated using cloud-based execution on Google Colab Pro+.
- Abstract(参考訳): 本稿では,大規模重み付き有向グラフのフィードバック弧を最小化するためのスケーラブルなアルゴリズムについて,神経コネクトームにおいて生物学的に有意なフィードフォワード構造を明らかにすることを目的とした。
FlyWire Connectome Challengeデータセットを用いて,前向きエッジの総重量を最大化するためのランキング戦略の有効性を示す。
本手法は, 強結合成分に基づく強直なヒューリスティックス, 利得を考慮した局所改善, 及び大域的構造解析を統合する。
実験により, 従来のトップパフォーマンス法よりも前縁重量が向上することが確認された。
すべてのアルゴリズムはPythonで効率的に実装され、Google Colab Pro+上でクラウドベースの実行を使用して検証される。
関連論文リスト
- Component-based Sketching for Deep ReLU Nets [55.404661149594375]
各種タスクのためのディープネットコンポーネントに基づくスケッチ手法を開発した。
我々はディープネットトレーニングを線形経験的リスク最小化問題に変換する。
提案したコンポーネントベーススケッチは飽和関数の近似においてほぼ最適であることを示す。
論文 参考訳(メタデータ) (2024-09-21T15:30:43Z) - Amplify Graph Learning for Recommendation via Sparsity Completion [16.32861024767423]
グラフ学習モデルは、協調フィルタリング(CF)ベースのレコメンデーションシステムに広くデプロイされている。
データ疎度の問題により、元の入力のグラフ構造は潜在的な肯定的な嗜好エッジを欠いている。
AGL-SC(Amplify Graph Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-06-27T08:26:20Z) - Unfolded proximal neural networks for robust image Gaussian denoising [7.018591019975253]
本稿では,二元FBと二元Chambolle-Pockアルゴリズムの両方に基づいて,ガウス分母タスクのためのPNNを統一的に構築するフレームワークを提案する。
また、これらのアルゴリズムの高速化により、関連するNN層におけるスキップ接続が可能であることを示す。
論文 参考訳(メタデータ) (2023-08-06T15:32:16Z) - DAG Matters! GFlowNets Enhanced Explainer For Graph Neural Networks [30.19635147123557]
我々はGFlowNetsベースのGNN Explainer(GFlowExplainer)という生成構造を提案する。
我々のGFlowExplainerは、サブグラフの確率がその報酬に比例するサブグラフの分布を生成するポリシーを学習することを目的としています。
我々は合成データと実データの両方について広範な実験を行い、質的および定量的な結果はGFlowExplainerの優位性を示している。
論文 参考訳(メタデータ) (2023-03-04T16:15:25Z) - Learning Large-scale Neural Fields via Context Pruned Meta-Learning [60.93679437452872]
本稿では,大規模ニューラルネットワーク学習のための最適化に基づくメタラーニング手法を提案する。
メタテスト時間における勾配再スケーリングは、非常に高品質なニューラルネットワークの学習を可能にすることを示す。
我々のフレームワークは、モデルに依存しない、直感的で、実装が容易であり、幅広い信号に対する大幅な再構成改善を示す。
論文 参考訳(メタデータ) (2023-02-01T17:32:16Z) - Simple Contrastive Graph Clustering [41.396185271303956]
既存の手法を改善するための単純なコントラストグラフクラスタリング(SCGC)アルゴリズムを提案する。
我々のアルゴリズムは、最近のコントラストの高いディープクラスタリング競合よりも、平均して7倍のスピードアップを達成している。
論文 参考訳(メタデータ) (2022-05-11T06:45:19Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - GLAN: A Graph-based Linear Assignment Network [29.788755291070462]
深層グラフネットワークに基づく学習可能な線形代入問題の解法を提案する。
合成データセットによる実験結果から,本手法は最先端のベースラインよりも優れていることがわかった。
また,提案手法を一般的なマルチオブジェクトトラッキング(MOT)フレームワークに組み込んで,エンド・ツー・エンドでトラッカーをトレーニングする。
論文 参考訳(メタデータ) (2022-01-05T13:18:02Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
学習中に勾配に基づく逆方向摂動を伴うノード特徴を反復的に拡張するFLAG(Free Large-scale Adversarial Augmentation on Graphs)を提案する。
FLAGはグラフデータに対する汎用的なアプローチであり、ノード分類、リンク予測、グラフ分類タスクで普遍的に機能する。
論文 参考訳(メタデータ) (2020-10-19T21:51:47Z) - Learning to Optimize Non-Rigid Tracking [54.94145312763044]
我々は、堅牢性を改善し、解法収束を高速化するために学習可能な最適化を採用する。
まず、CNNを通じてエンドツーエンドに学習された深い特徴にアライメントデータ項を統合することにより、追跡対象をアップグレードする。
次に,プレコンディショニング手法と学習手法のギャップを,プレコンディショナを生成するためにトレーニングされたConditionNetを導入することで埋める。
論文 参考訳(メタデータ) (2020-03-27T04:40:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。