論文の概要: GITO: Graph-Informed Transformer Operator for Learning Complex Partial Differential Equations
- arxiv url: http://arxiv.org/abs/2506.13906v1
- Date: Mon, 16 Jun 2025 18:35:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-18 17:34:59.207209
- Title: GITO: Graph-Informed Transformer Operator for Learning Complex Partial Differential Equations
- Title(参考訳): 複素偏微分方程式学習のためのグラフインフォーム変換演算子GITO
- Authors: Milad Ramezankhani, Janak M. Patel, Anirudh Deodhar, Dagnachew Birru,
- Abstract要約: 複素偏微分方程式系を学習するための新しいグラフインフォームド・トランスフォーマ演算子(GITO)アーキテクチャを提案する。
GITOは、HGT(Hybrid graph transformer)とTNO(Transformer Neural operator)の2つの主要モジュールから構成される。
ベンチマークPDEタスクの実験的結果は、GITOが既存のトランスフォーマーベースのニューラル演算子より優れていることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a novel graph-informed transformer operator (GITO) architecture for learning complex partial differential equation systems defined on irregular geometries and non-uniform meshes. GITO consists of two main modules: a hybrid graph transformer (HGT) and a transformer neural operator (TNO). HGT leverages a graph neural network (GNN) to encode local spatial relationships and a transformer to capture long-range dependencies. A self-attention fusion layer integrates the outputs of the GNN and transformer to enable more expressive feature learning on graph-structured data. TNO module employs linear-complexity cross-attention and self-attention layers to map encoded input functions to predictions at arbitrary query locations, ensuring discretization invariance and enabling zero-shot super-resolution across any mesh. Empirical results on benchmark PDE tasks demonstrate that GITO outperforms existing transformer-based neural operators, paving the way for efficient, mesh-agnostic surrogate solvers in engineering applications.
- Abstract(参考訳): 本稿では不規則な測地および非一様メッシュ上で定義された複素偏微分方程式系を学習するための新しいグラフインフォーム変換演算子(GITO)アーキテクチャを提案する。
GITOは、HGT(Hybrid graph transformer)とTNO(Transformer Neural operator)の2つの主要モジュールから構成される。
HGTはグラフニューラルネットワーク(GNN)を利用して、局所的な空間的関係を符号化し、トランスフォーマーを使って長距離依存関係をキャプチャする。
自己注意融合層は、GNNと変換器の出力を統合し、グラフ構造化データ上でより表現力のある特徴学習を可能にする。
TNOモジュールは、線形複雑度クロスアテンション層と自己アテンション層を使用して、符号化された入力関数を任意のクエリロケーションでの予測にマッピングし、離散化不変性を保証し、任意のメッシュにわたってゼロショット超解像を可能にする。
ベンチマークPDEタスクに関する実証的な結果は、GITOが既存のトランスフォーマーベースのニューラル演算子より優れており、エンジニアリングアプリケーションにおける効率的なメッシュに依存しないサロゲートソルバの道を開いたことを示している。
関連論文リスト
- LASE: Learned Adjacency Spectral Embeddings [7.612218105739107]
グラフ入力から結節隣接スペクトル埋め込み(ASE)を学習する。
LASEは解釈可能で、パラメータ効率が高く、未観測のエッジを持つ入力に対して堅牢である。
LASEレイヤは、Graph Convolutional Network (GCN)と完全に接続されたGraph Attention Network (GAT)モジュールを組み合わせる。
論文 参考訳(メタデータ) (2024-12-23T17:35:19Z) - Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors [16.04850782310842]
我々は反復最適化アルゴリズムをアンロールすることで、解釈可能で軽量なトランスフォーマーのようなニューラルネットワークを構築する。
正規化信号依存グラフ学習モジュールは、従来の変圧器の基本自己保持機構の変種に相当する。
論文 参考訳(メタデータ) (2024-06-06T14:01:28Z) - What Improves the Generalization of Graph Transformers? A Theoretical Dive into the Self-attention and Positional Encoding [67.59552859593985]
自己アテンションと位置エンコーディングを組み込んだグラフトランスフォーマーは、さまざまなグラフ学習タスクのための強力なアーキテクチャとして登場した。
本稿では,半教師付き分類のための浅いグラフ変換器の理論的検討について紹介する。
論文 参考訳(メタデータ) (2024-06-04T05:30:16Z) - Cell Graph Transformer for Nuclei Classification [78.47566396839628]
我々は,ノードとエッジを入力トークンとして扱うセルグラフ変換器(CGT)を開発した。
不愉快な特徴は、騒々しい自己注意スコアと劣等な収束につながる可能性がある。
グラフ畳み込みネットワーク(GCN)を利用して特徴抽出器を学習する新しいトポロジ対応事前学習法を提案する。
論文 参考訳(メタデータ) (2024-02-20T12:01:30Z) - Graph Transformers without Positional Encodings [0.7252027234425334]
グラフのラプラシアンスペクトルを認識する新しいスペクトル対応アテンション機構を用いたグラフ変換器であるEigenformerを紹介する。
我々は,多数の標準GNNベンチマークにおいて,SOTAグラフ変換器の性能向上を実証的に示す。
論文 参考訳(メタデータ) (2024-01-31T12:33:31Z) - Neural Tangent Kernels Motivate Graph Neural Networks with
Cross-Covariance Graphs [94.44374472696272]
グラフニューラルネットワーク(GNN)の文脈におけるNTKとアライメントについて検討する。
その結果、2層GNNのアライメントの最適性に関する理論的保証が確立された。
これらの保証は、入力と出力データの相互共分散の関数であるグラフシフト演算子によって特徴づけられる。
論文 参考訳(メタデータ) (2023-10-16T19:54:21Z) - Supercharging Graph Transformers with Advective Diffusion [28.40109111316014]
本稿では,この課題に対処するために,物理に着想を得たグラフトランスモデルAdvDIFFormerを提案する。
本稿では,AdvDIFFormerが位相シフトによる一般化誤差を制御できることを示す。
経験的に、このモデルは情報ネットワーク、分子スクリーニング、タンパク質相互作用の様々な予測タスクにおいて優位性を示す。
論文 参考訳(メタデータ) (2023-10-10T08:40:47Z) - Stable and Transferable Hyper-Graph Neural Networks [95.07035704188984]
グラフニューラルネットワーク(GNN)を用いたハイパーグラフでサポートする信号処理アーキテクチャを提案する。
スペクトル類似性により任意のグラフにまたがってGNNの安定性と転送可能性の誤差をバウンドするフレームワークを提供する。
論文 参考訳(メタデータ) (2022-11-11T23:44:20Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。