Towards Reliable Forgetting: A Survey on Machine Unlearning Verification
- URL: http://arxiv.org/abs/2506.15115v2
- Date: Sun, 13 Jul 2025 15:31:03 GMT
- Title: Towards Reliable Forgetting: A Survey on Machine Unlearning Verification
- Authors: Lulu Xue, Shengshan Hu, Wei Lu, Yan Shen, Dongxu Li, Peijin Guo, Ziqi Zhou, Minghui Li, Yanjun Zhang, Leo Yu Zhang,
- Abstract summary: This paper presents the first structured survey of machine unlearning verification methods.<n>We propose a taxonomy that organizes current techniques into two principal categories -- behavioral verification and parametric verification.<n>We examine their underlying assumptions, strengths, and limitations, and identify potential vulnerabilities in practical deployment.
- Score: 26.88376128769619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With growing demands for privacy protection, security, and legal compliance (e.g., GDPR), machine unlearning has emerged as a critical technique for ensuring the controllability and regulatory alignment of machine learning models. However, a fundamental challenge in this field lies in effectively verifying whether unlearning operations have been successfully and thoroughly executed. Despite a growing body of work on unlearning techniques, verification methodologies remain comparatively underexplored and often fragmented. Existing approaches lack a unified taxonomy and a systematic framework for evaluation. To bridge this gap, this paper presents the first structured survey of machine unlearning verification methods. We propose a taxonomy that organizes current techniques into two principal categories -- behavioral verification and parametric verification -- based on the type of evidence used to assess unlearning fidelity. We examine representative methods within each category, analyze their underlying assumptions, strengths, and limitations, and identify potential vulnerabilities in practical deployment. In closing, we articulate a set of open problems in current verification research, aiming to provide a foundation for developing more robust, efficient, and theoretically grounded unlearning verification mechanisms.
Related papers
- DATABench: Evaluating Dataset Auditing in Deep Learning from an Adversarial Perspective [59.66984417026933]
We introduce a novel taxonomy, classifying existing methods based on their reliance on internal features (IF) (inherent to the data) versus external features (EF) (artificially introduced for auditing)<n>We formulate two primary attack types: evasion attacks, designed to conceal the use of a dataset, and forgery attacks, intending to falsely implicate an unused dataset.<n>Building on the understanding of existing methods and attack objectives, we further propose systematic attack strategies: decoupling, removal, and detection for evasion; adversarial example-based methods for forgery.<n>Our benchmark, DATABench, comprises 17 evasion attacks, 5 forgery attacks, and 9
arXiv Detail & Related papers (2025-07-08T03:07:15Z) - Rectifying Privacy and Efficacy Measurements in Machine Unlearning: A New Inference Attack Perspective [42.003102851493885]
We propose RULI (Rectified Unlearning Evaluation Framework via Likelihood Inference) to address critical gaps in the evaluation of inexact unlearning methods.<n>RULI introduces a dual-objective attack to measure both unlearning efficacy and privacy risks at a per-sample granularity.<n>Our findings reveal significant vulnerabilities in state-of-the-art unlearning methods, exposing privacy risks underestimated by existing methods.
arXiv Detail & Related papers (2025-06-16T00:30:02Z) - SoK: Machine Unlearning for Large Language Models [14.88062383081161]
Large language model (LLM) unlearning has become a critical topic in machine learning.<n>We propose a new taxonomy based on the intention of unlearning.
arXiv Detail & Related papers (2025-06-10T20:30:39Z) - Does Machine Unlearning Truly Remove Model Knowledge? A Framework for Auditing Unlearning in LLMs [58.24692529185971]
We introduce a comprehensive auditing framework for unlearning evaluation comprising three benchmark datasets, six unlearning algorithms, and five prompt-based auditing methods.<n>We evaluate the effectiveness and robustness of different unlearning strategies.
arXiv Detail & Related papers (2025-05-29T09:19:07Z) - Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation [52.83870601473094]
Embodied agents exhibit immense potential across a multitude of domains.<n>Existing research predominantly concentrates on the security of general large language models.<n>This paper introduces a novel input moderation framework, meticulously designed to safeguard embodied agents.
arXiv Detail & Related papers (2025-04-22T08:34:35Z) - Verification of Machine Unlearning is Fragile [48.71651033308842]
We introduce two novel adversarial unlearning processes capable of circumventing both types of verification strategies.
This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
arXiv Detail & Related papers (2024-08-01T21:37:10Z) - Towards Lifecycle Unlearning Commitment Management: Measuring Sample-level Approximate Unlearning Completeness [30.596695293390415]
We introduce the task of Lifecycle Unlearning Commitment Management (LUCM) for approximate unlearning.
We propose an efficient metric designed to assess the sample-level unlearning completeness.
We show that this metric is able to serve as a tool for monitoring unlearning anomalies throughout the unlearning lifecycle.
arXiv Detail & Related papers (2024-03-19T15:37:27Z) - Towards a Framework for Deep Learning Certification in Safety-Critical Applications Using Inherently Safe Design and Run-Time Error Detection [0.0]
We consider real-world problems arising in aviation and other safety-critical areas, and investigate their requirements for a certified model.
We establish a new framework towards deep learning certification based on (i) inherently safe design, and (ii) run-time error detection.
arXiv Detail & Related papers (2024-03-12T11:38:45Z) - Self-consistent Validation for Machine Learning Electronic Structure [81.54661501506185]
Method integrates machine learning with self-consistent field methods to achieve both low validation cost and interpret-ability.
This, in turn, enables exploration of the model's ability with active learning and instills confidence in its integration into real-world studies.
arXiv Detail & Related papers (2024-02-15T18:41:35Z) - Testing learning-enabled cyber-physical systems with Large-Language Models: A Formal Approach [32.15663640443728]
The integration of machine learning (ML) into cyber-physical systems (CPS) offers significant benefits.
Existing verification and validation techniques are often inadequate for these new paradigms.
We propose a roadmap to transition from foundational probabilistic testing to a more rigorous approach capable of delivering formal assurance.
arXiv Detail & Related papers (2023-11-13T14:56:14Z) - Exploring Federated Unlearning: Review, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.<n>This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.<n>We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Kick Bad Guys Out! Conditionally Activated Anomaly Detection in Federated Learning with Zero-Knowledge Proof Verification [22.078088272837068]
Federated Learning (FL) systems are vulnerable to adversarial attacks, such as model poisoning and backdoor attacks.<n>We propose a novel anomaly detection method designed specifically for practical FL scenarios.<n>Our approach employs a two-stage, conditionally activated detection mechanism.
arXiv Detail & Related papers (2023-10-06T07:09:05Z) - Modelling Assessment Rubrics through Bayesian Networks: a Pragmatic Approach [40.06500618820166]
This paper presents an approach to deriving a learner model directly from an assessment rubric.
We illustrate how the approach can be applied to automatize the human assessment of an activity developed for testing computational thinking skills.
arXiv Detail & Related papers (2022-09-07T10:09:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.